The currently reported axial chiral molecules based on the 3,3'-substitution of the binaphthyl skeleton are limited by intrinsic fluorescence properties,resulting in generally low device efficiencies(EQE<5%)of ...The currently reported axial chiral molecules based on the 3,3'-substitution of the binaphthyl skeleton are limited by intrinsic fluorescence properties,resulting in generally low device efficiencies(EQE<5%)of related organic light emitting diodes(OLEDs).Herein,we designed and synthesized four pair of chiral binaphthyl enantiomers(R/S-1-R/S-4)adopting acceptor-donor-donor-acceptor(ADDA)structure by introducing different thioxanthone modification groups on the 3,3'-position of 2,2'-dimethoxy-1,1'-binaphthalene.Among them,emitter R/S-2 and R/S-4 obtained by enhancing intramolecular charge transfer exhibited TADF characteristics due to relatively small Est of 0.12eV and 0.17eV,and relatively moderate SOC matrix elements of 0.28 cm^(-1)and 0.10 cm^(-1)between the 1CT and 3LE states.The CD spectra of these enantiomers in diluted solutions showed perfect mirror images and reasonable gabs for small organic molecules(10^(-4)-10^(-3)).And the external quantum eficiencies(EQE)of 10.9%and 8.32%for device A and B based on emitter S-2 and S-4 were highest compared with currently reported axial chiral molecules based on the 3,3'-position substitution of binaphthyl skeleton,providing simple molecular design strategies to construct efficient CP-OLED device.展开更多
基金funded by National Natural Science Foundation of China(No.21772209)International Partnership Program of Chinese Academy of Sciences(IPP)(No.1A1111KYSB20210028)National Program for Support of Top-notch Young Professionals.
文摘The currently reported axial chiral molecules based on the 3,3'-substitution of the binaphthyl skeleton are limited by intrinsic fluorescence properties,resulting in generally low device efficiencies(EQE<5%)of related organic light emitting diodes(OLEDs).Herein,we designed and synthesized four pair of chiral binaphthyl enantiomers(R/S-1-R/S-4)adopting acceptor-donor-donor-acceptor(ADDA)structure by introducing different thioxanthone modification groups on the 3,3'-position of 2,2'-dimethoxy-1,1'-binaphthalene.Among them,emitter R/S-2 and R/S-4 obtained by enhancing intramolecular charge transfer exhibited TADF characteristics due to relatively small Est of 0.12eV and 0.17eV,and relatively moderate SOC matrix elements of 0.28 cm^(-1)and 0.10 cm^(-1)between the 1CT and 3LE states.The CD spectra of these enantiomers in diluted solutions showed perfect mirror images and reasonable gabs for small organic molecules(10^(-4)-10^(-3)).And the external quantum eficiencies(EQE)of 10.9%and 8.32%for device A and B based on emitter S-2 and S-4 were highest compared with currently reported axial chiral molecules based on the 3,3'-position substitution of binaphthyl skeleton,providing simple molecular design strategies to construct efficient CP-OLED device.