With the rapid development of life sciences, there is an increasing demand for intravital fluorescence imaging of small animals. However, large dimensions and limited working distances of objective lenses in tradition...With the rapid development of life sciences, there is an increasing demand for intravital fluorescence imaging of small animals. However, large dimensions and limited working distances of objective lenses in traditional fluorescence microscopes have limited their imaging applications mostly to superficial tissues. To overcome these disadvantages, researchers have developed the graded-index (GRIN) probes with small diameters for imaging internal organs of small animals in a minimally invasive fashion. However, dynamic imaging based on GRIN lens has not been studied extensively. Here, this paper presented a fluorescence endoscopic imaging system based on GRiN lenses using one-photon and two-photon excitation. GRIN lenses with 1.15 mm diameter and 7.65 mm length were used in the system. The images were acquired by a compact laser scanning imaging system with a resonant galvo-mirror system to scan the laser beam and a photomultiplier tube (PMT) to detect fluorescence signals. Experimental results showed that this system using two-photon excitation could implement dynamic fluorescence microendoscopic imaging and monitor the movement of blood flow beneath the skin in anesthetized mice while producing images with higher contrast and signal to noise ratio (SNR) than those using one photon excitation. It would be a useful tool for studying biological processes of small animals or plants in vivo.展开更多
The aim of this study is to develop a novel technique for improving the intraoperative margin assessment of glioblastoma by examining the total extrinsic extracellular matrix(ECM) with eosin staining using fluoresce...The aim of this study is to develop a novel technique for improving the intraoperative margin assessment of glioblastoma by examining the total extrinsic extracellular matrix(ECM) with eosin staining using fluorescence lifetime imaging microscopy(FLIM) and scale-invariant feature transform(SIFT) descriptor analysis. Pseudocolor FLIM images obviously exhibit ECM distributions, changes in sequential sections, and different regions of interest. Meanwhile, SIFT descriptors are first utilized for the discrimination of glioblastoma margins by matching similar ECM regions and extracting keypoint orientations from FLIM images obtained from a series of continuous slices. The findings indicate that FLIM imaging with SIFT analysis of the total ECM is a promising method for improving intraoperative diagnosis of frozen and surgically excised brain specimen sections.展开更多
文摘With the rapid development of life sciences, there is an increasing demand for intravital fluorescence imaging of small animals. However, large dimensions and limited working distances of objective lenses in traditional fluorescence microscopes have limited their imaging applications mostly to superficial tissues. To overcome these disadvantages, researchers have developed the graded-index (GRIN) probes with small diameters for imaging internal organs of small animals in a minimally invasive fashion. However, dynamic imaging based on GRIN lens has not been studied extensively. Here, this paper presented a fluorescence endoscopic imaging system based on GRiN lenses using one-photon and two-photon excitation. GRIN lenses with 1.15 mm diameter and 7.65 mm length were used in the system. The images were acquired by a compact laser scanning imaging system with a resonant galvo-mirror system to scan the laser beam and a photomultiplier tube (PMT) to detect fluorescence signals. Experimental results showed that this system using two-photon excitation could implement dynamic fluorescence microendoscopic imaging and monitor the movement of blood flow beneath the skin in anesthetized mice while producing images with higher contrast and signal to noise ratio (SNR) than those using one photon excitation. It would be a useful tool for studying biological processes of small animals or plants in vivo.
基金supported by the National Basic Research Program of China(No.2015CB352005)the National Natural Science Foundation of China(Nos.61525503,61378091,and 61620106016)+2 种基金the Guangdong Natural Science Foundation Innovation Team(No.2014A030312008)the Hong Kong,Macao and Taiwan cooperation innovation platform&major projects of international cooperation in Colleges and the Universities in Guangdong Province(No.2015KGJHZ002)the Shenzhen Basic Research Project(Nos.JCYJ20150930104948169,JCYJ2016032814 4746940,and GJHZ20160226202139185)
文摘The aim of this study is to develop a novel technique for improving the intraoperative margin assessment of glioblastoma by examining the total extrinsic extracellular matrix(ECM) with eosin staining using fluorescence lifetime imaging microscopy(FLIM) and scale-invariant feature transform(SIFT) descriptor analysis. Pseudocolor FLIM images obviously exhibit ECM distributions, changes in sequential sections, and different regions of interest. Meanwhile, SIFT descriptors are first utilized for the discrimination of glioblastoma margins by matching similar ECM regions and extracting keypoint orientations from FLIM images obtained from a series of continuous slices. The findings indicate that FLIM imaging with SIFT analysis of the total ECM is a promising method for improving intraoperative diagnosis of frozen and surgically excised brain specimen sections.