In this paper, we show that if H is a finite-dimensional Hopf algebra such that H and H^* are semisimple, then gl.dim(A#σH)=gl.dim(A), where a is a convolution invertible cocycle. We also discuss the relationshi...In this paper, we show that if H is a finite-dimensional Hopf algebra such that H and H^* are semisimple, then gl.dim(A#σH)=gl.dim(A), where a is a convolution invertible cocycle. We also discuss the relationship of global dimensions between the crossed product A^#σH and the algebra A, where A is coacted by H. Dually, we give a sufficient condition for a finite dimensional coalgebra C and a finite dimensional semisimple Hopf algebra H such that gl.dim(C α H)=gl.dim(C).展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 10771182)Nantong University Foundation (Grant No. xj06Z009)
文摘In this paper, we show that if H is a finite-dimensional Hopf algebra such that H and H^* are semisimple, then gl.dim(A#σH)=gl.dim(A), where a is a convolution invertible cocycle. We also discuss the relationship of global dimensions between the crossed product A^#σH and the algebra A, where A is coacted by H. Dually, we give a sufficient condition for a finite dimensional coalgebra C and a finite dimensional semisimple Hopf algebra H such that gl.dim(C α H)=gl.dim(C).