Background:Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury(TBI).However,the heterogeneity,multifunctionality,and time-dependent modulatio...Background:Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury(TBI).However,the heterogeneity,multifunctionality,and time-dependent modulation of brain damage and outcome mediated by neutrophils after TBI remain poorly understood.Methods:Using the combined single-cell transcriptomics,metabolomics,and proteomics analysis from TBI patients and the TBI mouse model,we investigate a novel neutrophil phenotype and its associated effects on TBI outcome by neurological deficit scoring and behavioral tests.We also characterized the underlying mechanisms both invitro and invivo through molecular simulations,signaling detections,gene expression regulation assessments[including dual-luciferase reporter and chromatin immunoprecipitation(ChIP)assays],primary cultures or co-cultures of neutrophils and oligodendrocytes,intracellular iron,and lipid hydroperoxide concentration measurements,as well as forkhead box protein O1(FOXO1)conditional knockout mice.Results:We identified that high expression of the FOXO1 protein was induced in neutrophils after TBI both in TBI patients and the TBI mouse model.Infiltration of these FOXO1high neutrophils in the brain was detected not only in the acute phase but also in the chronic phase post-TBI,aggravating acute brain inflammatory damage and promoting late TBI-induced depression.In the acute stage,FOXO1 upregulated cytoplasmic Versican(VCAN)to interact with the apoptosis regulator B-cell lymphoma-2(BCL-2)-associated X protein(BAX),suppressing the mitochondrial translocation of BAX,which mediated the antiapoptotic effect companied with enhancing interleukin-6(IL-6)production of FOXO1high neutrophils.In the chronic stage,the“FOXO1-transferrin receptor(TFRC)”mechanism contributes to FOXO1high neutrophil ferroptosis,disturbing the iron homeostasis of oligodendrocytes and inducing a reduction in myelin basic protein,which contributes to the progression of late depression after TBI.Conclusions:FOXO1high neutrophils represent a novel neutrophil phenotype that emerges in response to acute and chronic TBI,which provides insight into the heterogeneity,reprogramming activity,and versatility of neutrophils in TBI.展开更多
目的:基于网络药理学及分子对接方法探讨银杏叶治疗肝癌的活性成分、潜在靶点及作用机制。方法:采用TCMSP、Swiss Target Prediction、DrugBank和Genecards等数据库预测银杏叶的活性成分和肝癌相关疾病靶点,取交集后构建蛋白互作网络,使...目的:基于网络药理学及分子对接方法探讨银杏叶治疗肝癌的活性成分、潜在靶点及作用机制。方法:采用TCMSP、Swiss Target Prediction、DrugBank和Genecards等数据库预测银杏叶的活性成分和肝癌相关疾病靶点,取交集后构建蛋白互作网络,使用String、Cytoscape3.9.1分析平台绘制“成分-疾病-靶点”PPI网络图,采用Metascape分析平台对核心靶点进行GO功能和KEGG通路富集分析,使用Chem BIO 3D和Auto Dock Tools进行分子对接,模拟化合物与疾病靶点间的结合活性。结果:银杏叶活性成分27种主要为黄酮类化合物,关联861个疾病靶点,肝癌疾病靶点1637个,78个银杏叶与肝癌交集靶点,可能通路10条,包括Proteoglycans in cancer、Endocrine resistance、Estrogen signaling pathway等;分子对接结果表明活性化合物与靶点亲和力较好。结论:银杏叶中木犀草素-4'-葡萄糖苷、毛茛黄素、香叶木素等可能是治疗肝癌的关键成分,体现了银杏叶多成分、多靶点治疗肝癌的特点,为今后银杏叶的深度研究与开发提供了参考思路。展开更多
基金This work was supported by the National Natural Science Foundation of China(82071779 and 81901626)the Science Fund for Creative Research Groups of Chongqing Municipal Education Commission of China,the grants from the Talent Foundation of Army Medical University(to Shuang-Shuang Dai)+1 种基金the Scientific Research Grant(ALJ22J003)the Chongqing Natural Science Foundation of China(CSTB2022NSCQ-MSX0177).
文摘Background:Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury(TBI).However,the heterogeneity,multifunctionality,and time-dependent modulation of brain damage and outcome mediated by neutrophils after TBI remain poorly understood.Methods:Using the combined single-cell transcriptomics,metabolomics,and proteomics analysis from TBI patients and the TBI mouse model,we investigate a novel neutrophil phenotype and its associated effects on TBI outcome by neurological deficit scoring and behavioral tests.We also characterized the underlying mechanisms both invitro and invivo through molecular simulations,signaling detections,gene expression regulation assessments[including dual-luciferase reporter and chromatin immunoprecipitation(ChIP)assays],primary cultures or co-cultures of neutrophils and oligodendrocytes,intracellular iron,and lipid hydroperoxide concentration measurements,as well as forkhead box protein O1(FOXO1)conditional knockout mice.Results:We identified that high expression of the FOXO1 protein was induced in neutrophils after TBI both in TBI patients and the TBI mouse model.Infiltration of these FOXO1high neutrophils in the brain was detected not only in the acute phase but also in the chronic phase post-TBI,aggravating acute brain inflammatory damage and promoting late TBI-induced depression.In the acute stage,FOXO1 upregulated cytoplasmic Versican(VCAN)to interact with the apoptosis regulator B-cell lymphoma-2(BCL-2)-associated X protein(BAX),suppressing the mitochondrial translocation of BAX,which mediated the antiapoptotic effect companied with enhancing interleukin-6(IL-6)production of FOXO1high neutrophils.In the chronic stage,the“FOXO1-transferrin receptor(TFRC)”mechanism contributes to FOXO1high neutrophil ferroptosis,disturbing the iron homeostasis of oligodendrocytes and inducing a reduction in myelin basic protein,which contributes to the progression of late depression after TBI.Conclusions:FOXO1high neutrophils represent a novel neutrophil phenotype that emerges in response to acute and chronic TBI,which provides insight into the heterogeneity,reprogramming activity,and versatility of neutrophils in TBI.
文摘目的:基于网络药理学及分子对接方法探讨银杏叶治疗肝癌的活性成分、潜在靶点及作用机制。方法:采用TCMSP、Swiss Target Prediction、DrugBank和Genecards等数据库预测银杏叶的活性成分和肝癌相关疾病靶点,取交集后构建蛋白互作网络,使用String、Cytoscape3.9.1分析平台绘制“成分-疾病-靶点”PPI网络图,采用Metascape分析平台对核心靶点进行GO功能和KEGG通路富集分析,使用Chem BIO 3D和Auto Dock Tools进行分子对接,模拟化合物与疾病靶点间的结合活性。结果:银杏叶活性成分27种主要为黄酮类化合物,关联861个疾病靶点,肝癌疾病靶点1637个,78个银杏叶与肝癌交集靶点,可能通路10条,包括Proteoglycans in cancer、Endocrine resistance、Estrogen signaling pathway等;分子对接结果表明活性化合物与靶点亲和力较好。结论:银杏叶中木犀草素-4'-葡萄糖苷、毛茛黄素、香叶木素等可能是治疗肝癌的关键成分,体现了银杏叶多成分、多靶点治疗肝癌的特点,为今后银杏叶的深度研究与开发提供了参考思路。