Lithium-ion batteries(LIBs)have greatly facilitated our daily lives since 1990s[1,2].To meet the ever-increasing demand on energy density,Li metal is seen as the ultimate anode because of its ultra-high specific capac...Lithium-ion batteries(LIBs)have greatly facilitated our daily lives since 1990s[1,2].To meet the ever-increasing demand on energy density,Li metal is seen as the ultimate anode because of its ultra-high specific capacity(3860 m Ah/g)and the lowest electrochemical potential(-3.04 V vs.the standard hydrogen electrode)[3–6].However,issues of Li metal anode,such as Li dendrite formation and large volume change during plating/stripping。展开更多
Intracranial tumors and aneurysms rank among the foremost causes of mortality globally,presenting a significant public health challenge[1,2].Traditional embolization techniques,which involve the manual navigation of s...Intracranial tumors and aneurysms rank among the foremost causes of mortality globally,presenting a significant public health challenge[1,2].Traditional embolization techniques,which involve the manual navigation of slender catheters and guidewires through complex vascular networks,are highly dependent on the clinician's expertise and the mechanical capabilities of the instruments used.展开更多
无水氟化铜(CuF_(2))有望成为下一代锂电池正极材料,其高比容量(528 mA h g^(−1))和高工作电压(3.55 V vs.Li/Li^(+))使得其能量密度高达1874 W h kg^(−1).然而,由于充电时铜的溶解,CuF_(2)正极容易失活,这限制了其发展.本研究采用氟化...无水氟化铜(CuF_(2))有望成为下一代锂电池正极材料,其高比容量(528 mA h g^(−1))和高工作电压(3.55 V vs.Li/Li^(+))使得其能量密度高达1874 W h kg^(−1).然而,由于充电时铜的溶解,CuF_(2)正极容易失活,这限制了其发展.本研究采用氟化高浓电解液抑制铜的溶解,从而实现了CuF_(2)正极的可逆循环.采用氟化高浓电解液后,CuF_(2)正极的容量在30次循环后仍保有228 mA h g^(−1),是使用传统碳酸酯类电解液的电池容量的近三倍.综上,本研究提出了一种电解质工程策略,可以实现CuF_(2)正极的可逆充放电.展开更多
Potassium-ion batteries(KIBs)represent one of the most promising alternatives to lithium-ion batteries(LIBs)considering the potential low cost and abundant potassium resource.In this work,we demonstrate a core-shell s...Potassium-ion batteries(KIBs)represent one of the most promising alternatives to lithium-ion batteries(LIBs)considering the potential low cost and abundant potassium resource.In this work,we demonstrate a core-shell structured sponge cathode for KIBs,where amorphous V_(2)O_(5) uniformly coats on carbon nanotube(CNT)sponge via atomic layer deposition(ALD).The V_(2)O_(5)@CNT sponge shows several advantages as cathode:(1)the three-dimensional(3D)conductive network of CNT sponge offers a fast electron transport pathway,(2)the porous nature and high surface area of CNT sponge enables enough access for electrolyte to V_(2)O_(5),(3)the amorphous structure of V_(2)O_(5) offers a fast kinetics upon K-ion insertion/deinsertion.The V_(2)O_(5)@CNT sponge cathode delivers a high capacity of 206mA h/g and moderate cycling and rate performance in common carbonate-based electrolyte system.展开更多
基金financial support by the National Natural Science Foundation of China(No.51802224)“Shanghai Rising-Star Program”(19QA1409300)Shanghai Aerospace Science and Technology Innovation Fundation(SISP2018)。
文摘Lithium-ion batteries(LIBs)have greatly facilitated our daily lives since 1990s[1,2].To meet the ever-increasing demand on energy density,Li metal is seen as the ultimate anode because of its ultra-high specific capacity(3860 m Ah/g)and the lowest electrochemical potential(-3.04 V vs.the standard hydrogen electrode)[3–6].However,issues of Li metal anode,such as Li dendrite formation and large volume change during plating/stripping。
文摘Intracranial tumors and aneurysms rank among the foremost causes of mortality globally,presenting a significant public health challenge[1,2].Traditional embolization techniques,which involve the manual navigation of slender catheters and guidewires through complex vascular networks,are highly dependent on the clinician's expertise and the mechanical capabilities of the instruments used.
基金This work was supported by the Fundamental Research Funds for the Central Universities and the Institute of Carbon Neutrality of Tongji University.
文摘无水氟化铜(CuF_(2))有望成为下一代锂电池正极材料,其高比容量(528 mA h g^(−1))和高工作电压(3.55 V vs.Li/Li^(+))使得其能量密度高达1874 W h kg^(−1).然而,由于充电时铜的溶解,CuF_(2)正极容易失活,这限制了其发展.本研究采用氟化高浓电解液抑制铜的溶解,从而实现了CuF_(2)正极的可逆循环.采用氟化高浓电解液后,CuF_(2)正极的容量在30次循环后仍保有228 mA h g^(−1),是使用传统碳酸酯类电解液的电池容量的近三倍.综上,本研究提出了一种电解质工程策略,可以实现CuF_(2)正极的可逆充放电.
基金supported by the Fundamental Research Funds for the Central Universities.
文摘Potassium-ion batteries(KIBs)represent one of the most promising alternatives to lithium-ion batteries(LIBs)considering the potential low cost and abundant potassium resource.In this work,we demonstrate a core-shell structured sponge cathode for KIBs,where amorphous V_(2)O_(5) uniformly coats on carbon nanotube(CNT)sponge via atomic layer deposition(ALD).The V_(2)O_(5)@CNT sponge shows several advantages as cathode:(1)the three-dimensional(3D)conductive network of CNT sponge offers a fast electron transport pathway,(2)the porous nature and high surface area of CNT sponge enables enough access for electrolyte to V_(2)O_(5),(3)the amorphous structure of V_(2)O_(5) offers a fast kinetics upon K-ion insertion/deinsertion.The V_(2)O_(5)@CNT sponge cathode delivers a high capacity of 206mA h/g and moderate cycling and rate performance in common carbonate-based electrolyte system.