期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence of Stand-Alone Vertical Gas Vents on Aeration and Denitrification of Organic Municipal Waste Assessed by Two-Dimensional (2D) Lysimeters
1
作者 Tadis Dillon Takayuki Shimaoka teppei komiya 《Journal of Geoscience and Environment Protection》 2023年第12期209-228,共20页
Landfilled organic waste, in the presence of oxygen, can undergo aerobic decomposition facilitated by heterotrophic microorganisms. Aerobic degradation of solid waste can quickly consume available oxygen thus curtaili... Landfilled organic waste, in the presence of oxygen, can undergo aerobic decomposition facilitated by heterotrophic microorganisms. Aerobic degradation of solid waste can quickly consume available oxygen thus curtailing further degradation. The aim of this study was the investigation of a low-cost method of replenishing oxygen consumed in landfilled waste. Three 2D lysimeters were established to investigate the effectiveness of stand-alone, vertical ventilation pipes inserted into waste masses. Two different configurations of ventilation were tested with the third lysimeter acting as an unventilated control. Lysimeters were left uninsulated and observed over the course of 6 months with regular collection of gas and leachate samples. Lysimeters were then simulated for Oxygen (O<sub>2</sub>) and Nitrous oxide (N<sub>2</sub>O) to analyze the denitrification contributions of each. The experiment revealed that a single ventilation pipe can increase the mean oxygen level of a 1.7 m × 1.0 m area by up to 13.5%. It also identified that while increasing the density of ventilation pipes led to increased O<sub>2</sub> levels, this increase was not significant at the 0.05 probability level. A single vent averaged 13.67% O<sub>2</sub> while inclusion of an additional vent in the same area only increased the average to 14.59%, a 6.7% increase. Simulation helped to verify that lower ventilation pipe placement density may be more efficient as in addition to the effect on oxygenation, denitrification efficiency may increase. Simulations of N<sub>2</sub>O production estimated between 8% - 20% more N<sub>2</sub>O being generated with lower venting density configurations. 展开更多
关键词 Organic Waste Waste Stabilization Passive Aeration 2D Lysimeter COMSOL Multiphysics In-Situ Aeration
下载PDF
Physical and mechanical properties of municipal solid waste incineration residues with cement and coal fly ash using X-ray Computed Tomography scanners
2
作者 Toshifumi MUKUNOKI Ta Thi HOAI +2 位作者 Daisuke FUKUSHIMA teppei komiya Takayuki SHIMAOKA 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2019年第3期640-652,共13页
A significant volume of Municipal Solid Waste incineration bottom ash and fly ash (i.e.,incineration residues) are commonly disposed as landfill.Meanwhile,reclamation of landfill sites to create a new land space after... A significant volume of Municipal Solid Waste incineration bottom ash and fly ash (i.e.,incineration residues) are commonly disposed as landfill.Meanwhile,reclamation of landfill sites to create a new land space after their closure becomes an important goal in the current fewer and fewer land availability scenario in many narrow countries.The objective of this study is to reclaim incineration residue materials in the landfill site by using cement and coal fly ash as stabilizers aiming at performing quality check as new developed materials before future construction.Indeed,physical and mechanical properties of these new materials should be initially examined at the micro scale,which is the primary fundamental for construction at larger scale.This research examines quantitative influences of using the combination of cement and coal fly ash at different ratio on the internal structure and ability of strength enhancement of incineration residues when suffering from loading.Couple of industrial and micro-focus X-ray computed tomography (CT) scanners combined with an image analysis technique were utilized to characterize and visualize the behavior and internal structure of the incineration residues-cement-coal fly ash mixture under the series of unconfined compression test and curing period effect.Nine types of cement solidified incineration residues in term of different curing period (i.e.,7,14,28 days) and coal fly ash addition content (i.e.,0%,9%,18%) were scanned before and after unconfined compression tests.It was shown that incineration residues solidified by cement and coal fly ash showed an increase in compression strength and deformation modulus with curing time and coal fly ash content.Three-dimension computed tomography images observation and analysis confirmed that solidified incineration residues including incineration bottom and fly ash as well as cement and coal fly ash have the deliquescent materials.Then,it was studied that stabilized parts play a more important role than spatial void distribution in increment or reduction of compression strength. 展开更多
关键词 mechanical property MUNICIPAL solid waste INCINERATION RESIDUES coal FLY ash unconfined compression test image analysis X-Ray COMPUTED Tomography scanners
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部