Maize grain is the second most vital food after wheat to humans and forms an important part of a human diet due to its nutrients. In Kenya, it is estimated that one out of every two acres of land put to crop productio...Maize grain is the second most vital food after wheat to humans and forms an important part of a human diet due to its nutrients. In Kenya, it is estimated that one out of every two acres of land put to crop production is under maize crop. Maize can also be fed whole to livestock (grazed or chopped and ensiled). Due to increased demand and the need for higher productivity, farmers have adopted modern farming methods which include use of fertilizers, pesticides, compost manure, and irrigation. Uses of these products elevate amounts of heavy metals in the soil. Such heavy metals such as lead (Pb) and cadmium when taken up by plants accumulate in the plants becoming toxic at high levels. It is essential to monitor these levels in grains and leaves to ensure they do not exceed the WHO permissible limits. This study aimed at monitoring the levels of heavy metals uptake in maize (Zea mays) grains and leaves is within permissible levels. Level of heavy metals in maize grains from different ecological zones in UG County had mean concentration of Zn 0.122, Cd 0.03, Cu 0.111, Co 0.04, and Pb 0.33 mg/kg. These results were below WHO standards except for Cadmium, Co, and Pb which were slightly higher than recommended standard. The study also found that maize leaves had mean concentration of Zn 0.115, Cd 0.04, Cu 0.117, Co. 0.041 and Pb 0.323 mg/kg. The results were below WHO standards except Co and Pb which had slightly higher levels than the recommended WHO standards. The analytical results from this study provided important baseline statistics on the concentration of selected heavy metals in maize grains and leaves besides being an important assessment of environmental pollution in rural areas where maize farming is predominant.展开更多
There has been a rapidly increasing urbanization and industrialization as well as increased usage of agrochemicals in the recent few years which have resulted in accumulation of heavy metals in cultivated food, soils ...There has been a rapidly increasing urbanization and industrialization as well as increased usage of agrochemicals in the recent few years which have resulted in accumulation of heavy metals in cultivated food, soils and water. This research aimed at establishing the levels of Zn2+, Cd2+, Cu2+, Cr2+, Mn2+, Fe2+ and Pb2+ metal ions in kales, soil and irrigation water on farms along river Moiben. Twenty seven samples of vegetables, soil and water samples were collected using purposive sampling method, that is, the samples were collected from the households who had kales in their farms. Samples were then dried, grounded, digested and analyzed using Inductive Couple Plasma-Optical Emission Spectroscopy (ICP-OES). The results showed that the Fe had the highest mean in soil and water with the values of 250.22 ± 85.37 and 0.72 ± 0.33 mg/kg respectively, while in kales Zn value was highest with a value of 0.0154 ± 0.007 mg/kg. The metal ion concentrations in the soils and the irrigation water were higher than in kales. The concentrations on the metal ions were following this order Fe > Mn > Zn > Cu > Cr > Pb > Cd for soil as well as for water but for the kales sample it followed slightly different order Zn > Fe > Mn > Cu > Cr > Pb > Cd. In soil samples, metal ions concentrations (mg/kg) were found to be high compared to the levels in water and kales. ANOVA tests revealed that the mean difference in heavy metals concentration from different stations within the area was insignificant (p > 0.05) with an exception of Cd (p = 0.001) in water samples, Fe (p = 0.007) in kales samples, Zn (p = 0.016) and Cd (p = 0.011) in the samples of soil. Results were compared to the acceptable levels set by World Health Organization (WHO) and the study showed that for kales, concentrations of the metal ions were all lower than the (WHO) set standards. For water samples, Fe, Pb, Mn metal ions were above the WHO set standards. The presence of the investigated heavy metals in the samples could be pointed to excessive use of agrochemicals as indicated by our earlier survey on the use of agrochemicals. We therefore recommend thorough investigations and monitoring of the said heavy metals in the commercially distributed agrochemicals.展开更多
文摘Maize grain is the second most vital food after wheat to humans and forms an important part of a human diet due to its nutrients. In Kenya, it is estimated that one out of every two acres of land put to crop production is under maize crop. Maize can also be fed whole to livestock (grazed or chopped and ensiled). Due to increased demand and the need for higher productivity, farmers have adopted modern farming methods which include use of fertilizers, pesticides, compost manure, and irrigation. Uses of these products elevate amounts of heavy metals in the soil. Such heavy metals such as lead (Pb) and cadmium when taken up by plants accumulate in the plants becoming toxic at high levels. It is essential to monitor these levels in grains and leaves to ensure they do not exceed the WHO permissible limits. This study aimed at monitoring the levels of heavy metals uptake in maize (Zea mays) grains and leaves is within permissible levels. Level of heavy metals in maize grains from different ecological zones in UG County had mean concentration of Zn 0.122, Cd 0.03, Cu 0.111, Co 0.04, and Pb 0.33 mg/kg. These results were below WHO standards except for Cadmium, Co, and Pb which were slightly higher than recommended standard. The study also found that maize leaves had mean concentration of Zn 0.115, Cd 0.04, Cu 0.117, Co. 0.041 and Pb 0.323 mg/kg. The results were below WHO standards except Co and Pb which had slightly higher levels than the recommended WHO standards. The analytical results from this study provided important baseline statistics on the concentration of selected heavy metals in maize grains and leaves besides being an important assessment of environmental pollution in rural areas where maize farming is predominant.
文摘There has been a rapidly increasing urbanization and industrialization as well as increased usage of agrochemicals in the recent few years which have resulted in accumulation of heavy metals in cultivated food, soils and water. This research aimed at establishing the levels of Zn2+, Cd2+, Cu2+, Cr2+, Mn2+, Fe2+ and Pb2+ metal ions in kales, soil and irrigation water on farms along river Moiben. Twenty seven samples of vegetables, soil and water samples were collected using purposive sampling method, that is, the samples were collected from the households who had kales in their farms. Samples were then dried, grounded, digested and analyzed using Inductive Couple Plasma-Optical Emission Spectroscopy (ICP-OES). The results showed that the Fe had the highest mean in soil and water with the values of 250.22 ± 85.37 and 0.72 ± 0.33 mg/kg respectively, while in kales Zn value was highest with a value of 0.0154 ± 0.007 mg/kg. The metal ion concentrations in the soils and the irrigation water were higher than in kales. The concentrations on the metal ions were following this order Fe > Mn > Zn > Cu > Cr > Pb > Cd for soil as well as for water but for the kales sample it followed slightly different order Zn > Fe > Mn > Cu > Cr > Pb > Cd. In soil samples, metal ions concentrations (mg/kg) were found to be high compared to the levels in water and kales. ANOVA tests revealed that the mean difference in heavy metals concentration from different stations within the area was insignificant (p > 0.05) with an exception of Cd (p = 0.001) in water samples, Fe (p = 0.007) in kales samples, Zn (p = 0.016) and Cd (p = 0.011) in the samples of soil. Results were compared to the acceptable levels set by World Health Organization (WHO) and the study showed that for kales, concentrations of the metal ions were all lower than the (WHO) set standards. For water samples, Fe, Pb, Mn metal ions were above the WHO set standards. The presence of the investigated heavy metals in the samples could be pointed to excessive use of agrochemicals as indicated by our earlier survey on the use of agrochemicals. We therefore recommend thorough investigations and monitoring of the said heavy metals in the commercially distributed agrochemicals.