期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Preservation of Raw Camel Milk by Lactoperoxidase System Using Hydrogen Peroxide Producing Lactic Acid Bacteria
1
作者 Dakalo Dashe Egon Bech Hansen +5 位作者 Mohammed Yusuf Kurtu tesfemariam berhe Mitiku Eshetu Yonas Hailu Amsalu Waktola Adane Shegaw 《Open Journal of Animal Sciences》 2020年第3期387-401,共15页
This study was conducted to investigate the effect of lactic acid bacteria (LAB) activated lactoperoxidase system (LPs) on keeping quality of raw camel milk at room temperature. Camel milk samples were collected from ... This study was conducted to investigate the effect of lactic acid bacteria (LAB) activated lactoperoxidase system (LPs) on keeping quality of raw camel milk at room temperature. Camel milk samples were collected from Errer valley, Babile district of eastern Ethiopia. The level of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) for activation of LPs was optimized using different levels of exogenous H<sub>2</sub>O<sub>2</sub>. Strains of LAB (<span style="white-space:nowrap;"><i></span>Lactococcus lactis 22333<span style="white-space:nowrap;"></i></span>, <span style="white-space:nowrap;"><i></span>Weissella confusa<span style="white-space:nowrap;"></i></span> 22308, <span style="white-space:nowrap;"><i></span>W. confusa<span style="white-space:nowrap;"></i></span> 22282, <span style="white-space:nowrap;"><i></span>W. confusa<span style="white-space:nowrap;"></i></span> 22296, <span style="white-space:nowrap;"><i></span>S. Infatarius<span style="white-space:nowrap;"></i></span> 22279 and <span style="white-space:nowrap;"><i></span>S. lutetiensis<span style="white-space:nowrap;"></i></span> 22319) with H<sub>2</sub>O<sub>2</sub> producing properties were evaluated, and <i>W. confusa</i> 22282 was selected as the best strain to produce H<sub>2</sub>O<sub>2</sub>. Storage stability of the milk samples was evaluated through the acidification curves, titratable acidity (TA), total bacterial count (TBC) and coliform counts (CC) at storage times of 0, 6, 12, 18, 24 and 48 hours. The LP activity and the inhibitory effect of activated LPs were evaluated by growing <span style="white-space:normal;"><i></span>E. coli<span style="white-space:normal;"></i></span> in pasteurized and boiled camel milk samples as contaminating agent. Results indicated that the <span style="white-space:normal;"><i></span>W. confusa<span style="white-space:normal;"></i></span> 22282 activated LPs generally showed significantly (P < 0.05) slower rates of acidification, lactic acid production and lower TBC and CC during the storage time compared to the non-activated sample. The H<sub>2</sub>O<sub>2</sub> producing LAB and exogenous H<sub>2</sub>O<sub>2</sub> activated LPs in pasteurized camel milk significantly reduced the growth of <span style="white-space:normal;"><i></span>E. coli<span style="white-space:normal;"></i></span> population compared to non-activated pasteurized milk. Overall, the result of acid production and microbial analysis indicated that the activation of LPs by H<sub>2</sub>O<sub>2</sub> producing LAB (i.e. <span style="white-space:normal;"> </span><span style="white-space:normal;"><i></span>W. confusa<span style="white-space:normal;"></i></span> 22282) maintained the storage stability of raw camel milk. Therefore, it can be concluded that the activation of LPs by biological method using H<sub>2</sub>O<sub>2</sub> producing LAB can substitute the chemical activation method of LPs in camel milk. 展开更多
关键词 Camel Milk Lactoperoxidase System Lactic Acid Bacteria PRESERVATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部