This paper describes a novel sharp interface approach for modeling the cavitation phenomena in incompressible viscous flows. A one-field formulation is adopted for the vapor-liquid two-phase flow and the interface is ...This paper describes a novel sharp interface approach for modeling the cavitation phenomena in incompressible viscous flows. A one-field formulation is adopted for the vapor-liquid two-phase flow and the interface is tracked using a volume of fluid(VOF) method. Phase change at the interface is modeled using a simplification of the Rayleigh-Plesset equation. Interface jump conditions in velocity and pressure field are treated using a level set based ghost fluid method. The level set function is constructed from the volume fraction function. A marching cubes method is used to compute the interface area at the interface grid cells. A parallel fast marching method is employed to propagate interface information into the field. A description of the equations and numerical methods is presented. Results for a cavitating hydrofoil are compared with experimental data.展开更多
基金supported by the NSWC Carderock ILIR programby the US Office of Naval Research(Grant No.N000141-01-00-1-7)
文摘This paper describes a novel sharp interface approach for modeling the cavitation phenomena in incompressible viscous flows. A one-field formulation is adopted for the vapor-liquid two-phase flow and the interface is tracked using a volume of fluid(VOF) method. Phase change at the interface is modeled using a simplification of the Rayleigh-Plesset equation. Interface jump conditions in velocity and pressure field are treated using a level set based ghost fluid method. The level set function is constructed from the volume fraction function. A marching cubes method is used to compute the interface area at the interface grid cells. A parallel fast marching method is employed to propagate interface information into the field. A description of the equations and numerical methods is presented. Results for a cavitating hydrofoil are compared with experimental data.