In this paper,some effort is provided to optimize the geometry of a concrete hollow brick(used in the construction of building roofs)in order to increase the related thermal resistance,thereby reducing energy consumpt...In this paper,some effort is provided to optimize the geometry of a concrete hollow brick(used in the construction of building roofs)in order to increase the related thermal resistance,thereby reducing energy consumption.The analysis is conducted for three different configurations of the hollow concrete bricks.Coupling of conduction,natural convection and thermal radiation phenomena is considered.Moreover,the flows are assumed to be laminar and two-dimensional for the whole range of parameters examined.The conservation equations are solved by a finite difference method based on the control volumes approach and the SIMPLE algorithm for velocity-pressure coupling.The results show that the aspect ratio affects neither the nature of the fluid flow nor the number of convective cells.However,the extension of the circulation cells increases with this parameter.Moreover,the cavities with a large aspect ratio lead to significant reductions in the heat transfer through the hollow block,these reductions reaching approximately 14%.展开更多
This work presents the results of a set of steady-state numerical simulations about heat transfer in hollow blocks in the presence of coupled natural convection,conduction and radiation.Blocks with two air cells deep ...This work presents the results of a set of steady-state numerical simulations about heat transfer in hollow blocks in the presence of coupled natural convection,conduction and radiation.Blocks with two air cells deep in the vertical direction and three identical cavities in the horizontal direction are considered(typically used for building ceilings).Moreover,their outside horizontal surface is subjected to an incident solar flux and outdoor environment temperature while the inside surface is exposed to typical indoor environment conditions.The flows are considered laminar and two-dimensional over the whole range of parameters examined.The conservation equations are solved by means of a finite difference method based on the control volumes approach,relying on the SIMPLE algorithm for what concerns the coupling of pressure and velocity.The effects of the number of cells in the horizontal direction and the thermal conductivity on the heat transfer through the alveolar structure have been investigated.The results show that the number of holes has a significant impact on the value of the overall heat flux through the considered structure.展开更多
文摘In this paper,some effort is provided to optimize the geometry of a concrete hollow brick(used in the construction of building roofs)in order to increase the related thermal resistance,thereby reducing energy consumption.The analysis is conducted for three different configurations of the hollow concrete bricks.Coupling of conduction,natural convection and thermal radiation phenomena is considered.Moreover,the flows are assumed to be laminar and two-dimensional for the whole range of parameters examined.The conservation equations are solved by a finite difference method based on the control volumes approach and the SIMPLE algorithm for velocity-pressure coupling.The results show that the aspect ratio affects neither the nature of the fluid flow nor the number of convective cells.However,the extension of the circulation cells increases with this parameter.Moreover,the cavities with a large aspect ratio lead to significant reductions in the heat transfer through the hollow block,these reductions reaching approximately 14%.
文摘This work presents the results of a set of steady-state numerical simulations about heat transfer in hollow blocks in the presence of coupled natural convection,conduction and radiation.Blocks with two air cells deep in the vertical direction and three identical cavities in the horizontal direction are considered(typically used for building ceilings).Moreover,their outside horizontal surface is subjected to an incident solar flux and outdoor environment temperature while the inside surface is exposed to typical indoor environment conditions.The flows are considered laminar and two-dimensional over the whole range of parameters examined.The conservation equations are solved by means of a finite difference method based on the control volumes approach,relying on the SIMPLE algorithm for what concerns the coupling of pressure and velocity.The effects of the number of cells in the horizontal direction and the thermal conductivity on the heat transfer through the alveolar structure have been investigated.The results show that the number of holes has a significant impact on the value of the overall heat flux through the considered structure.