期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Lightweight Convolutional Neural Network with Representation Self-challenge for Fingerprint Liveness Detection
1
作者 Jie Chen Chengsheng Yuan +3 位作者 Chen Cui Zhihua Xia Xingming Sun thangarajah akilan 《Computers, Materials & Continua》 SCIE EI 2022年第10期719-733,共15页
Fingerprint identification systems have been widely deployed in many occasions of our daily life.However,together with many advantages,they are still vulnerable to the presentation attack(PA)by some counterfeit finger... Fingerprint identification systems have been widely deployed in many occasions of our daily life.However,together with many advantages,they are still vulnerable to the presentation attack(PA)by some counterfeit fingerprints.To address challenges from PA,fingerprint liveness detection(FLD)technology has been proposed and gradually attracted people’s attention.The vast majority of the FLD methods directly employ convolutional neural network(CNN),and rarely pay attention to the problem of overparameterization and over-fitting of models,resulting in large calculation force of model deployment and poor model generalization.Aiming at filling this gap,this paper designs a lightweight multi-scale convolutional neural network method,and further proposes a novel hybrid spatial pyramid pooling block to extract abundant features,so that the number of model parameters is greatly reduced,and support multi-scale true/fake fingerprint detection.Next,the representation self-challenge(RSC)method is used to train the model,and the attention mechanism is also adopted for optimization during execution,which alleviates the problem of model over-fitting and enhances generalization of detection model.Finally,experimental results on two publicly benchmarks:LivDet2011 and LivDet2013 sets,show that our method achieves outstanding detection results for blind materials and cross-sensor.The size of the model parameters is only 548 KB,and the average detection error of cross-sensors and cross-materials are 15.22 and 1 respectively,reaching the highest level currently available. 展开更多
关键词 FLD LIGHTWEIGHT MULTI-SCALE RSC blind materials
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部