On the 3rd of April 2017, an earthquake of moment magnitude 6.5 occurred near Moiyabana in central Botswana. This paper is aimed at studying the spatial distribution of the foreshock and aftershock sequences associate...On the 3rd of April 2017, an earthquake of moment magnitude 6.5 occurred near Moiyabana in central Botswana. This paper is aimed at studying the spatial distribution of the foreshock and aftershock sequences associated with the Moiyabana earthquake. The foreshocks and aftershocks data used were from the Botswana Geoscience Institute (BGI) and the Seisan software was used to analyze the foreshock and aftershock events. The analyses revealed nine epicenter locations of foreshocks which are spread out across the country and most of them are located in the central and southern parts of Botswana, while the aftershocks are clustered around the mainshock. Although five of the nine foreshocks occurred far from the boundaries of major tectonic units, the other four occurred near key features such as the Zoetfontein, Lecha and Chobe faults. The spatial distribution of aftershocks indicates that the stress released by the mainshock, re-activated the planes of weakness in the vicinity of the mainshock and farther away from the mainshock. Hence, this affected the Zoetfontein fault, the boundary between Passarge basin and Magondi belt and the boundary between the Kaapvaal craton and Limpopo mobile belt. The aftershocks also show a northwest-southeast trend, which probably indicates the rupture plane;and mainly lie within the Limpopo mobile belt that is sandwiched between the Kaapvaal craton to the south and Zimbabwe craton to the north. Furthermore, the aftershocks concentration to the south reveals a close relation in demarcating the boundary of the Kaapvaal craton and the Limpopo mobile belt.展开更多
文摘On the 3rd of April 2017, an earthquake of moment magnitude 6.5 occurred near Moiyabana in central Botswana. This paper is aimed at studying the spatial distribution of the foreshock and aftershock sequences associated with the Moiyabana earthquake. The foreshocks and aftershocks data used were from the Botswana Geoscience Institute (BGI) and the Seisan software was used to analyze the foreshock and aftershock events. The analyses revealed nine epicenter locations of foreshocks which are spread out across the country and most of them are located in the central and southern parts of Botswana, while the aftershocks are clustered around the mainshock. Although five of the nine foreshocks occurred far from the boundaries of major tectonic units, the other four occurred near key features such as the Zoetfontein, Lecha and Chobe faults. The spatial distribution of aftershocks indicates that the stress released by the mainshock, re-activated the planes of weakness in the vicinity of the mainshock and farther away from the mainshock. Hence, this affected the Zoetfontein fault, the boundary between Passarge basin and Magondi belt and the boundary between the Kaapvaal craton and Limpopo mobile belt. The aftershocks also show a northwest-southeast trend, which probably indicates the rupture plane;and mainly lie within the Limpopo mobile belt that is sandwiched between the Kaapvaal craton to the south and Zimbabwe craton to the north. Furthermore, the aftershocks concentration to the south reveals a close relation in demarcating the boundary of the Kaapvaal craton and the Limpopo mobile belt.