We report on the synthesis of Sn-doped hematite nanoparticles(Sn-α-Fe_(2)O_(3) NPs)by the hydrothermal method.The prepared Sn-α-Fe_(2)O_(3) NPs had a highly pure and well crystalline rhombohedral phase with an avera...We report on the synthesis of Sn-doped hematite nanoparticles(Sn-α-Fe_(2)O_(3) NPs)by the hydrothermal method.The prepared Sn-α-Fe_(2)O_(3) NPs had a highly pure and well crystalline rhombohedral phase with an average particle size of 41.4 nm.The optical properties of as-synthesizedα-Fe_(2)O_(3) NPs show a higher bandgap energy(2.40-2.57 eV)than that of pure bulkα-Fe_(2)O_(3)(2.1 eV).By doping Sn intoα-Fe_(2)O_(3) NPs,the Sn-doped hematite was observed a redshift toward a long wavelength with in-creasing Sn concentration from 0%to 4.0%.The photocatalytic activity of Sn-dopedα-Fe_(2)O_(3) NPs was evaluated by Congo red(CR)dye degradation.The degradation efficiency of CR dye using Sn-α-Fe_(2)O_(3) NPs catalyst is higher than that of pureα-Fe_(2)O_(3) NPs.The highest degradation efficiency of CR dye was 97.8%using 2.5%Sn-dopedα-Fe_(2)O_(3) NPs catalyst under visible-light irradi-ation.These results suggest that the synthesized Sn-dopedα-Fe_(2)O_(3) nanoparticles might be a suitable approach to develop a photocatalytic degradation of toxic inorganic dye in wastewater.展开更多
基金the financial support of Vietnam Academy of Science and Technology under project VAST01.04/18-19.
文摘We report on the synthesis of Sn-doped hematite nanoparticles(Sn-α-Fe_(2)O_(3) NPs)by the hydrothermal method.The prepared Sn-α-Fe_(2)O_(3) NPs had a highly pure and well crystalline rhombohedral phase with an average particle size of 41.4 nm.The optical properties of as-synthesizedα-Fe_(2)O_(3) NPs show a higher bandgap energy(2.40-2.57 eV)than that of pure bulkα-Fe_(2)O_(3)(2.1 eV).By doping Sn intoα-Fe_(2)O_(3) NPs,the Sn-doped hematite was observed a redshift toward a long wavelength with in-creasing Sn concentration from 0%to 4.0%.The photocatalytic activity of Sn-dopedα-Fe_(2)O_(3) NPs was evaluated by Congo red(CR)dye degradation.The degradation efficiency of CR dye using Sn-α-Fe_(2)O_(3) NPs catalyst is higher than that of pureα-Fe_(2)O_(3) NPs.The highest degradation efficiency of CR dye was 97.8%using 2.5%Sn-dopedα-Fe_(2)O_(3) NPs catalyst under visible-light irradi-ation.These results suggest that the synthesized Sn-dopedα-Fe_(2)O_(3) nanoparticles might be a suitable approach to develop a photocatalytic degradation of toxic inorganic dye in wastewater.