Dimensionality provides a clear fingerprint on the dispersion of infrared-active,polar-optical phonons.For these phonons,the local dipoles parametrized by the Born effective charges drive the LO-TO splitting of bulk m...Dimensionality provides a clear fingerprint on the dispersion of infrared-active,polar-optical phonons.For these phonons,the local dipoles parametrized by the Born effective charges drive the LO-TO splitting of bulk materials;this splitting actually breaks down in two-dimensional materials.Here,we develop the theory for one-dimensional(1D)systems—nanowires,nanotubes,and atomic and polymeric chains.Combining an analytical model with the implementation of density-functional perturbation theory in 1D boundary conditions,we show that the dielectric splitting in the dispersion relations collapses as x^(2) log(x)at the zone center.The dielectric properties and the radius of the 1D materials are linked by the present work to these red shifts,opening infrared and Raman characterization avenues.展开更多
基金We acknowledge funding from the Swiss National Science Foundation(SNSF)and its National Centre of Competence in Research MARVEL on“Computational Design and Discovery of Novel Materials”(grant number 182892,N.R.,N.M.).We acknowledge computational support from the Swiss National Supercomputing Centre CSCS under project ID mr24.Fruitful discussions with Anna Fontcuberta i Morral and Francesco Libbi are also gratefully acknowledged.
文摘Dimensionality provides a clear fingerprint on the dispersion of infrared-active,polar-optical phonons.For these phonons,the local dipoles parametrized by the Born effective charges drive the LO-TO splitting of bulk materials;this splitting actually breaks down in two-dimensional materials.Here,we develop the theory for one-dimensional(1D)systems—nanowires,nanotubes,and atomic and polymeric chains.Combining an analytical model with the implementation of density-functional perturbation theory in 1D boundary conditions,we show that the dielectric splitting in the dispersion relations collapses as x^(2) log(x)at the zone center.The dielectric properties and the radius of the 1D materials are linked by the present work to these red shifts,opening infrared and Raman characterization avenues.