In response to the evolving challenges posed by small unmanned aerial vehicles(UAVs),which have the potential to transport harmful payloads or cause significant damage,we present AV-FDTI,an innovative Audio-Visual Fus...In response to the evolving challenges posed by small unmanned aerial vehicles(UAVs),which have the potential to transport harmful payloads or cause significant damage,we present AV-FDTI,an innovative Audio-Visual Fusion system designed for Drone Threat Identification.AV-FDTI leverages the fusion of audio and omnidirectional camera feature inputs,providing a comprehensive solution to enhance the precision and resilience of drone classification and 3D localization.Specifically,AV-FDTI employs a CRNN network to capture vital temporal dynamics within the audio domain and utilizes a pretrained ResNet50 model for image feature extraction.Furthermore,we adopt a visual information entropy and cross-attention-based mechanism to enhance the fusion of visual and audio data.Notably,our system is trained based on automated Leica tracking annotations,offering accurate ground truth data with millimeter-level accuracy.Comprehensive comparative evaluations demonstrate the superiority of our solution over the existing systems.In our commitment to advancing this field,we will release this work as open-source code and wearable AV-FDTI design,contributing valuable resources to the research community.展开更多
基金National Research Foundation,Singapore,under its Medium-Sized Center for Advanced Robotics Technology Innovation(CARTIN)under project WP5 within the Delta-NTU Corporate Lab with funding support from A*STAR under its IAF-ICP program(Grant no:I2201E0013)and Delta Electronics Inc.
文摘In response to the evolving challenges posed by small unmanned aerial vehicles(UAVs),which have the potential to transport harmful payloads or cause significant damage,we present AV-FDTI,an innovative Audio-Visual Fusion system designed for Drone Threat Identification.AV-FDTI leverages the fusion of audio and omnidirectional camera feature inputs,providing a comprehensive solution to enhance the precision and resilience of drone classification and 3D localization.Specifically,AV-FDTI employs a CRNN network to capture vital temporal dynamics within the audio domain and utilizes a pretrained ResNet50 model for image feature extraction.Furthermore,we adopt a visual information entropy and cross-attention-based mechanism to enhance the fusion of visual and audio data.Notably,our system is trained based on automated Leica tracking annotations,offering accurate ground truth data with millimeter-level accuracy.Comprehensive comparative evaluations demonstrate the superiority of our solution over the existing systems.In our commitment to advancing this field,we will release this work as open-source code and wearable AV-FDTI design,contributing valuable resources to the research community.