期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Smart contract token-based privacy-preserving access control system for industrial Internet of Things
1
作者 Weizheng Wang Huakun Huang +3 位作者 Zhimeng Yin thippa reddy gadekallu Mamoun Alazab Chunhua Su 《Digital Communications and Networks》 SCIE CSCD 2023年第2期337-346,共10页
Due to mobile Internet technology's rapid popularization,the Industrial Internet of Things(IIoT)can be seen everywhere in our daily lives.While IIoT brings us much convenience,a series of security and scalability ... Due to mobile Internet technology's rapid popularization,the Industrial Internet of Things(IIoT)can be seen everywhere in our daily lives.While IIoT brings us much convenience,a series of security and scalability issues related to permission operations rise to the surface during device communications.Hence,at present,a reliable and dynamic access control management system for IIoT is in urgent need.Up till now,numerous access control architectures have been proposed for IIoT.However,owing to centralized models and heterogeneous devices,security and scalability requirements still cannot be met.In this paper,we offer a smart contract token-based solution for decentralized access control in IIoT systems.Specifically,there are three smart contracts in our system,including the Token Issue Contract(TIC),User Register Contract(URC),and Manage Contract(MC).These three contracts collaboratively supervise and manage various events in IIoT environments.We also utilize the lightweight and post-quantum encryption algorithm-Nth-degree Truncated Polynomial Ring Units(NTRU)to preserve user privacy during the registration process.Subsequently,to evaluate our proposed architecture's performance,we build a prototype platform that connects to the local blockchain.Finally,experiment results show that our scheme has achieved secure and dynamic access control for the IIoT system compared with related research. 展开更多
关键词 Blockchain Privacy preservation Smart contract Industrial IoT
下载PDF
Deep Neural Networks Based Approach for Battery Life Prediction 被引量:3
2
作者 Sweta Bhattacharya Praveen Kumar reddy Maddikunta +4 位作者 Iyapparaja Meenakshisundaram thippa reddy gadekallu Sparsh Sharma Mohammed Alkahtani Mustufa Haider Abidi 《Computers, Materials & Continua》 SCIE EI 2021年第11期2599-2615,共17页
The Internet of Things(IoT)and related applications have witnessed enormous growth since its inception.The diversity of connecting devices and relevant applications have enabled the use of IoT devices in every domain.... The Internet of Things(IoT)and related applications have witnessed enormous growth since its inception.The diversity of connecting devices and relevant applications have enabled the use of IoT devices in every domain.Although the applicability of these applications are predominant,battery life remains to be a major challenge for IoT devices,wherein unreliability and shortened life would make an IoT application completely useless.In this work,an optimized deep neural networks based model is used to predict the battery life of the IoT systems.The present study uses the Chicago Park Beach dataset collected from the publicly available data repository for the experimentation of the proposed methodology.The dataset is pre-processed using the attribute mean technique eliminating the missing values and then One-Hot encoding technique is implemented to convert it to numerical format.This processed data is normalized using the Standard Scaler technique.Moth Flame Optimization(MFO)Algorithm is then implemented for selecting the optimal features in the dataset.These optimal features are finally fed into the DNN model and the results generated are evaluated against the stateof-the-art models,which justify the superiority of the proposed MFO-DNN model. 展开更多
关键词 Battery life prediction moth flame optimization one-hot encoding standard scaler
下载PDF
Classification and Categorization of COVID-19 Outbreak in Pakistan 被引量:1
3
作者 Amber Ayoub Kainaat Mahboob +4 位作者 Abdul Rehman Javed Muhammad Rizwan thippa reddy gadekallu Mustufa Haider Abidi Mohammed Alkahtani 《Computers, Materials & Continua》 SCIE EI 2021年第10期1253-1269,共17页
Coronavirus is a potentially fatal disease that normally occurs in mammals and birds.Generally,in humans,the virus spreads through aerial droplets of any type of fluid secreted from the body of an infected person.Coro... Coronavirus is a potentially fatal disease that normally occurs in mammals and birds.Generally,in humans,the virus spreads through aerial droplets of any type of fluid secreted from the body of an infected person.Coronavirus is a family of viruses that is more lethal than other unpremeditated viruses.In December 2019,a new variant,i.e.,a novel coronavirus(COVID-19)developed in Wuhan province,China.Since January 23,2020,the number of infected individuals has increased rapidly,affecting the health and economies of many countries,including Pakistan.The objective of this research is to provide a system to classify and categorize the COVID-19 outbreak in Pakistan based on the data collected every day from different regions of Pakistan.This research also compares the performance of machine learning classifiers(i.e.,Decision Tree(DT),Naive Bayes(NB),Support Vector Machine,and Logistic Regression)on the COVID-19 dataset collected in Pakistan.According to the experimental results,DT and NB classifiers outperformed the other classifiers.In addition,the classified data is categorized by implementing a Bayesian Regularization Artificial Neural Network(BRANN)classifier.The results demonstrate that the BRANN classifier outperforms state-of-the-art classifiers. 展开更多
关键词 COVID-19 PANDEMIC neural network BRANN machine learning
下载PDF
Robust Attack Detection Approach for IIoT Using Ensemble Classifier
4
作者 V.Priya I.Sumaiya Thaseen +2 位作者 thippa reddy gadekallu Mohamed K.Aboudaif Emad Abouel Nasr 《Computers, Materials & Continua》 SCIE EI 2021年第3期2457-2470,共14页
Generally,the risks associated with malicious threats are increasing for the Internet of Things(IoT)and its related applications due to dependency on the Internet and the minimal resource availability of IoT devices.T... Generally,the risks associated with malicious threats are increasing for the Internet of Things(IoT)and its related applications due to dependency on the Internet and the minimal resource availability of IoT devices.Thus,anomaly-based intrusion detection models for IoT networks are vital.Distinct detection methodologies need to be developed for the Industrial Internet of Things(IIoT)network as threat detection is a significant expectation of stakeholders.Machine learning approaches are considered to be evolving techniques that learn with experience,and such approaches have resulted in superior performance in various applications,such as pattern recognition,outlier analysis,and speech recognition.Traditional techniques and tools are not adequate to secure IIoT networks due to the use of various protocols in industrial systems and restricted possibilities of upgradation.In this paper,the objective is to develop a two-phase anomaly detection model to enhance the reliability of an IIoT network.In the first phase,SVM and Naïve Bayes,are integrated using an ensemble blending technique.K-fold cross-validation is performed while training the data with different training and testing ratios to obtain optimized training and test sets.Ensemble blending uses a random forest technique to predict class labels.An Artificial Neural Network(ANN)classifier that uses the Adam optimizer to achieve better accuracy is also used for prediction.In the second phase,both the ANN and random forest results are fed to the model’s classification unit,and the highest accuracy value is considered the final result.The proposed model is tested on standard IoT attack datasets,such as WUSTL_IIOT-2018,N_BaIoT,and Bot_IoT.The highest accuracy obtained is 99%.A comparative analysis of the proposed model using state-of-the-art ensemble techniques is performed to demonstrate the superiority of the results.The results also demonstrate that the proposed model outperforms traditional techniques and thus improves the reliability of an IIoT network. 展开更多
关键词 BLENDING ENSEMBLE intrusion detection Industrial Internet of Things(IIoT)
下载PDF
Cooperative Spectrum Sensing Deployment for Cognitive Radio Networks for Internet of Things 5G Wireless Communication
5
作者 Thulasiraman Balachander Kadiyala Ramana +2 位作者 Rasineni Madana Mohana Gautam Srivastava thippa reddy gadekallu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第3期698-720,共23页
Recently,Cooperative Spectrum Sensing(CSS)for Cognitive Radio Networks(CRN)plays a significant role in efficient 5G wireless communication.Spectrum sensing is a significant technology in CRN to identify underutilized ... Recently,Cooperative Spectrum Sensing(CSS)for Cognitive Radio Networks(CRN)plays a significant role in efficient 5G wireless communication.Spectrum sensing is a significant technology in CRN to identify underutilized spectrums.The CSS technique is highly applicable due to its fast and efficient performance.5G wireless communication is widely employed for the continuous development of efficient and accurate Internet of Things(IoT)networks.5G wireless communication will potentially lead the way for next generation IoT communication.CSS has established significant consideration as a feasible resource to improve identification performance by developing spatial diversity in receiving signal strength in IoT.In this paper,an optimal CSS for CRN is performed using Offset Quadrature Amplitude Modulation Universal Filtered Multi-Carrier Non-Orthogonal Multiple Access(OQAM/UFMC/NOMA)methodologies.Availability of spectrum and bandwidth utilization is a key challenge in CRN for IoT 5G wireless communication.The optimal solution for CRN in IoT-based 5G communication should be able to provide optimal bandwidth and CSS,low latency,Signal Noise Ratio(SNR)improvement,maximum capacity,offset synchronization,and Peak Average Power Ratio(PAPR)reduction.The Energy Efficient All-Pass Filter(EEAPF)algorithm is used to eliminate PAPR.The deployment approach improves Quality of Service(QoS)in terms of system reliability,throughput,and energy efficiency.Our in-depth experimental results show that the proposed methodology provides an optimal solution when directly compares against current existing methodologies. 展开更多
关键词 cooperative spectrum sensing cognitive radio network Internet of Things offset quadratureamplitude modulation universal filtered multi-carrier non-orthogonal multiple access
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部