In-situ transmission X-ray diffraction based compression deformation experiments are performed to study the twinning behaviour in asextruded(non-aged)and peak-aged Mg-7Sn-3Zn-0.04Na alloy.The axial lattice strains wer...In-situ transmission X-ray diffraction based compression deformation experiments are performed to study the twinning behaviour in asextruded(non-aged)and peak-aged Mg-7Sn-3Zn-0.04Na alloy.The axial lattice strains were measured in the parent grains,twins and the precipitates as a function of applied stress.The critical shear stress for achieving 5%twinning was found to be increased by∼26MPa by the presence of 7%of Sn and by∼50MPa by the presence of the particles formed after 10 h of aging.The evolution of twin volume fraction with plastic strain is similar in both non-aged and aged conditions,indicating no change in the relative activities of slip and twin in the ideally oriented(10.10)parent grains.Predictions made in previous studies of twin thickening stresses and twin bypass stresses agree reasonably well with the measured values,given the experimental error.Considerable relaxation was seen in the precipitate lattice reflections.This is attributed to relaxation effects continuing during X-ray data collection.Macroscopic flow curves confirm that precipitate hardening in the present system is particularly sensitive to relaxation effects.This is likely to be an important consideration for fatigue loading of precipitate hardened samples.展开更多
A novel hybrid alloy, designed for plastic injection dies, was fabricated by depositing M789 steel on wrought N709 steel through laser powder bed fusion (LPBF). The M789-N709 interface (with a thickness of about 300 ...A novel hybrid alloy, designed for plastic injection dies, was fabricated by depositing M789 steel on wrought N709 steel through laser powder bed fusion (LPBF). The M789-N709 interface (with a thickness of about 300 μm) is characterized by the variation of titanium content from 0 wt% in the N709 section to about 1 wt% near the M789 region. A thermodynamic and kinetic simulation after aging treatment was performed to reveal the precipitation behavior in the M789-N709 interface. Different sizes and amounts of ETA-Ni3(Ti,Al) strengthening precipitates exist, with a maximum volume fraction and radius of about 5% and 5 nm, respectively (near the M789 region). Moreover, the volume fraction of precipitates significantly increases with Ti additions of up to 0.6 wt% (i.e., 100 μm from the N709 region);however, beyond this threshold, the increase in the amount of precipitation becomes gradual. The thermodynamic and kinetic simulations performed in the interface are validated by electron diffraction spectroscopy (EDS), electron probe microanalyzer (EPMA) and atomic probe tomography (APT) results;the measured precipitate size from the APT analysis is consistent with the simulation results. Two morphologies of precipitates were detected: elongated and spherical;both contribute to the robustness of the interface. The robust M789-N709 interface formed during the process shows good compatibility between the alloys, which is critical for extended tool life. These new insights about the precipitation at the interface of M789-N709 alloy are crucial in assessing the feasibility of N709 as a cost-effective base material to minimize the use of M789 when printing plastic injection dies.展开更多
基金This research was supported by the Australian Research Council’s Discovery research grant(DP150101577).
文摘In-situ transmission X-ray diffraction based compression deformation experiments are performed to study the twinning behaviour in asextruded(non-aged)and peak-aged Mg-7Sn-3Zn-0.04Na alloy.The axial lattice strains were measured in the parent grains,twins and the precipitates as a function of applied stress.The critical shear stress for achieving 5%twinning was found to be increased by∼26MPa by the presence of 7%of Sn and by∼50MPa by the presence of the particles formed after 10 h of aging.The evolution of twin volume fraction with plastic strain is similar in both non-aged and aged conditions,indicating no change in the relative activities of slip and twin in the ideally oriented(10.10)parent grains.Predictions made in previous studies of twin thickening stresses and twin bypass stresses agree reasonably well with the measured values,given the experimental error.Considerable relaxation was seen in the precipitate lattice reflections.This is attributed to relaxation effects continuing during X-ray data collection.Macroscopic flow curves confirm that precipitate hardening in the present system is particularly sensitive to relaxation effects.This is likely to be an important consideration for fatigue loading of precipitate hardened samples.
基金funding received from a McCain Foundation Postdoctoral Fellowship,the Natural Sciences and Engineering Research Council of Canada(NSERC)(RGPIN-04006,ALLRP-560425)the Canada Foundation for Innovation(CFI)(38944)the New Brunswick Innovation Foundation(NBIF)(RAI2021-016,EP2021-005).
文摘A novel hybrid alloy, designed for plastic injection dies, was fabricated by depositing M789 steel on wrought N709 steel through laser powder bed fusion (LPBF). The M789-N709 interface (with a thickness of about 300 μm) is characterized by the variation of titanium content from 0 wt% in the N709 section to about 1 wt% near the M789 region. A thermodynamic and kinetic simulation after aging treatment was performed to reveal the precipitation behavior in the M789-N709 interface. Different sizes and amounts of ETA-Ni3(Ti,Al) strengthening precipitates exist, with a maximum volume fraction and radius of about 5% and 5 nm, respectively (near the M789 region). Moreover, the volume fraction of precipitates significantly increases with Ti additions of up to 0.6 wt% (i.e., 100 μm from the N709 region);however, beyond this threshold, the increase in the amount of precipitation becomes gradual. The thermodynamic and kinetic simulations performed in the interface are validated by electron diffraction spectroscopy (EDS), electron probe microanalyzer (EPMA) and atomic probe tomography (APT) results;the measured precipitate size from the APT analysis is consistent with the simulation results. Two morphologies of precipitates were detected: elongated and spherical;both contribute to the robustness of the interface. The robust M789-N709 interface formed during the process shows good compatibility between the alloys, which is critical for extended tool life. These new insights about the precipitation at the interface of M789-N709 alloy are crucial in assessing the feasibility of N709 as a cost-effective base material to minimize the use of M789 when printing plastic injection dies.