期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Effect of reductant type on the embedding direct reduction of beach titanomagnetite concentrate 被引量:7
1
作者 Yong-qiang Zhao ti-chang sun +2 位作者 Hong-yu Zhao Chao Chen Xiao-ping Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第2期152-159,共8页
Iron and titanium were recovered from beach titanomagnetite(TTM) concentrate by embedding direct reduction and magnetic separation. The reduction products and the effects of the reductant type and reduction temperatur... Iron and titanium were recovered from beach titanomagnetite(TTM) concentrate by embedding direct reduction and magnetic separation. The reduction products and the effects of the reductant type and reduction temperature on the reduction behavior were investigated. The results showed that the reduction of TTM concentrate was strongly related to the gasification reactivity of the reductant. Bitumite presented a better product index than wheat-straw biochar and coke, mainly because the gasification reactivity of bitumite was better than that of the other reductants. In addition, high temperatures were not beneficial to embedding direct reduction because of the emergence of a molten phase and iron-joined crystals, which in turn reduced the diffusion rate of the reducing gas and impeded the reduction reaction in the central area of the roasted briquette. The use of bitumite as the reductant at a C/Fe molar ratio of 1.4 and a reduction temperature of 1200°C for 120 min resulted in direct-reduction iron powder assaying 90.28 wt% TFe and 0.91 wt% TiO_2 with an iron recovery of 91.83% and titanium concentrate assaying 46.01 wt% TiO_2 with a TiO_2 recovery of 91.19%. Titanium existed mainly in the form of anosovite and ilmenite in the titanium concentrate. 展开更多
关键词 BEACH TITANOMAGNETITE CONCENTRATE EMBEDDING direct REDUCTION magnetic SEPARATION reductant REDUCTION temperature
下载PDF
Effects and mechanisms of fluorite on the co-reduction of blast furnace dust and seaside titanomagnetite 被引量:7
2
作者 Tian-yang Hu ti-chang sun +2 位作者 Jue Kou Chao Geng Yong-qiang Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第11期1201-1210,共10页
The co-reduction roasting and grinding-magnetic separation of seaside titanomagnetite and blast furnace dust was investigated with and without fluorite addition at a reduction roasting temperature of 1250°C for 6... The co-reduction roasting and grinding-magnetic separation of seaside titanomagnetite and blast furnace dust was investigated with and without fluorite addition at a reduction roasting temperature of 1250°C for 60 min, a grinding fineness of-43 μm accounting for 69.02 wt% of the total, and a low-intensity magnetic field strength of 151 kA/m. The mineral composition, microstructure, and state of the roasted products were analyzed, and the concentrations of CO and CO_2 were analyzed in the co-reduction roasting. Better results were achieved with a small fluorite dosage(≤4 wt%) in the process of co-reduction. In addition, F^- was found to reduce the melting point and viscosity of the slag phase because of the high content of aluminate and silicate minerals in the blast furnace dust. The low moisture content of the blast furnace dust and calcic minerals inhibited the hydrolysis of CaF_2 and the loss of F^-. Compared with the blast furnace dust from Chengdeng, the blast furnace dusts from Jiugang and Jinxin inhibited the diffusion of F-when used as reducing agents, leading to weaker effects of fluorite. 展开更多
关键词 seaside TITANOMAGNETITE blast FURNACE dust co-reduction ROASTING FLUORITE MECHANISMS
下载PDF
Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate 被引量:10
3
作者 Xiao-hui Li Jue Kou +2 位作者 ti-chang sun Shi-chao Wu Yong-qiang Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第3期301-309,共9页
Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate(VTC) were investigated. It was found that calcium compounds had great effects on the metallization rate of the reducti... Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate(VTC) were investigated. It was found that calcium compounds had great effects on the metallization rate of the reduction product, the order of the metallization rate of reduction product being CaCO3 > no additive > CaSO4 > CaCl2, which indicated that the addition of CaCO3 was more conducive to promoting the reduction of iron than other calcium compounds. Gas analysis showed that there were mainly two processes in the carbothermic reduction of VTC, a solid–solid and a solid–gas reaction. The concentrations of CO and CO2 were highest when CaCO3 was added, while that in a roasting system decreased the most when CaCl2 was added. X-ray diffraction(XRD) analysis showed that calcium compounds could change the reduction process of ilmenite in VTC. The phase compositions of the reduction products were changed from metallic iron(Fe) and anosovite(FeTi2O5) to metallic iron(Fe) and perovekite(CaTiO3) when calcium compounds were added. Additionally, CaSO4 and CaCl2 could significantly promote the growth of metallic iron particles, though the existence of Fe-bearing Mg2TiO4 in reduction products was not conducive to the reduction of iron. The formation of FeS would further hinder the reduction of iron after adding CaSO4. 展开更多
关键词 vanadium titanomagnetite concentrate calcium compounds carbothermic reduction metallic iron perovekite
下载PDF
Study on the strength of cold-bonded high-phosphorus oolitic hematite-coal composite briquettes 被引量:7
4
作者 Wen Yu ti-chang sun +2 位作者 Zhen-zhen Liu Jue Kou Cheng-yan Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第5期423-430,共8页
Composite briquettes containing high-phosphorus oolitic hematite and coal were produced with a twin-roller briquette machine using sodium carboxymethyl cellulose, molasses, starch, sodium silicate, and bentonite as bi... Composite briquettes containing high-phosphorus oolitic hematite and coal were produced with a twin-roller briquette machine using sodium carboxymethyl cellulose, molasses, starch, sodium silicate, and bentonite as binders. The effect of these binders on the strength of the composite briquettes, including cold strength and high-temperature strength, was investigated by drop testing and compression testing. It was found the addition of Ca(OH)2 and Na2CO3 not only improved the reduction of iron oxides and promoted dephosphorization during the reduction-separation process but also provided strength to the composite briquettes during the briquetting process; a compressive strength of 152.8 N per briquette was obtained when no binders were used. On this basis, the addition of molasses, sodium silicate, starch, and ben- tonite improved the cold strength of the composite briquettes, and a maximum compressive strength of 404.6 N per briquette was obtained by using starch. When subjected to a thermal treatment at 1200~C, all of the composite briquettes suffered from a sharp decrease in compressive strength during the initial reduction process. This decrease in strength was related to an increase in porosity of the composite briquettes. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses showed that the decrease in strength of the composite briquettes could be caused by four factors: decomposition of bonding materials, gasification of coal, transportation of byproduct gases in the composite briquettes, and thermal stress. 展开更多
关键词 HEMATITE BRIQUETTING binders compressive strength POROSITY direct reduction process-
下载PDF
Effect of additives on iron recovery and dephosphorization by reduction roasting-magnetic separation of refractory high-phosphorus iron ore 被引量:10
5
作者 Shi-chao Wu Zheng-yao Li +2 位作者 ti-chang sun Jue Kou Xiao-hui Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第12期1908-1916,共9页
The effect of CaCO_(3),Na_(2)CO_(3),and CaF_(2) on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe_(3)PO_(7) and apatite was investigated.The results ... The effect of CaCO_(3),Na_(2)CO_(3),and CaF_(2) on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe_(3)PO_(7) and apatite was investigated.The results revealed that Na_(2)CO_(3) had the most significant effect on iron recovery and dephosphorization,followed by CaCO_(3),the effect of CaF_(2) was negligible.The mechanisms of CaCO_(3),Na_(2)CO_(3),and CaF_(2) were investigated using X-ray diffraction(XRD),scanning electron microscopy and energy dispersive spectrometry(SEM-EDS).Without additives,Fe_(3)PO_(7) was reduced to elemental phosphorus and formed an iron-phosphorus alloy with metallic iron.The addition of CaCO_(3) reacted with Fe_(3)PO_(7) to generate an enormous amount of Ca_(3)(PO_(4))_(2) and promoted the reduction of iron oxides.However,the growth of iron particles was inhibited.With the addition of Na_(2)CO_(3),the phosphorus in Fe_(3)PO_(7) migrated to nepheline and Na_(2)CO_(3) improved the reduction of iron oxides and growth of iron particles.Therefore,the recovery of iron and the separation of iron and phosphorus were the best.In contrast,CaF_(2) reacted with Fe_(3)PO_(7) to form fine Ca_(3)(PO_(4))2 particles scattered around the iron particles,making the separation of iron and phosphorus difficult. 展开更多
关键词 ALLOY PHOSPHORUS SEPARATION
下载PDF
Generation process of FeS and its inhibition mechanism on iron mineral reduction in selective direct reduction of laterite nickel ore 被引量:5
6
作者 Zhi-guo Liu ti-chang sun +1 位作者 Xiao-ping Wang En-xia Gao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第9期901-906,共6页
Numerous studies have demonstrated that Na2SO4 can significantly inhibit the reduction of iron oxide in the selective reduction process of laterite nickel ore. FeS generated in the process plays an important role in s... Numerous studies have demonstrated that Na2SO4 can significantly inhibit the reduction of iron oxide in the selective reduction process of laterite nickel ore. FeS generated in the process plays an important role in selective reduction, but the generation process of FeS and its inhibition mechanism on iron reduction are not clear. To figure this out, X-ray diffraction and scanning electron microscopy analyses were conducted to study the roasted ore. The results show that when Na2SO4 is added in the roasting, the FeO content in the roasted ore increases accompanied by the emergence of FeS phase. Further analysis indicates that NaeS formed by the reaction of Na2SO4 with CO reacts with SiO2 at the FeO surface to generate FeS and Na2Si2Os. As a result, a thin film forms on the surface of FeO, hindering the contact between reducing gas and FeO. Therefore, the reduction of iron is depressed, and the FeO content in the roasted ore increases. 展开更多
关键词 laterite nickel ore direct reduction sodium sulfate iron sulfide
下载PDF
Preparation and film-growing mechanism of hydrous zirconia coated on TiO_2 被引量:4
7
作者 Jie Li ti-chang sun +3 位作者 Yong Wang Li-na Wang Jing-kui Qu Tao Qi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第5期660-667,共8页
To overcome the photochemical activity of rutile used as a pigment and improve its durability in application, hydrous zirconia-coated TiO2 was prepared by the precipitation method. High-resolution transmission electro... To overcome the photochemical activity of rutile used as a pigment and improve its durability in application, hydrous zirconia-coated TiO2 was prepared by the precipitation method. High-resolution transmission electron microscope (HRTEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and surface structure of hydrous zirconia-coated TiO2. The ζ-potential and ultraviolet (UV) absorption of both coated and uncoated rutile were examined. The results show that hydrous zirconia can not only improve the durability but also raise the lightness. A suitable ZrO2 content of hydrous zirconia-coated TiO2 is about 1.0wt%, and a dense film on the surface of rutile can be formed with better pigmentary properties. Based on the thermodynamic analysis, the zirconia-coating process and the film growth mechanism were discussed. 展开更多
关键词 COATINGS RUTILE ZIRCONIA materials preparation mechanism
下载PDF
Effects of Na_2SO_4 on iron and nickel reduction in a high-iron and low-nickel laterite ore 被引量:5
8
作者 Xiao-ping Wang ti-chang sun +1 位作者 Chao Chen Jue Kou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第4期383-390,共8页
This study investigates the reactions of Na2SO4 and its effects on iron and nickel reduction in the roasting of a high-iron and low-nickel laterite ore through gas composition, X-ray diffraction, and scanning electron... This study investigates the reactions of Na2SO4 and its effects on iron and nickel reduction in the roasting of a high-iron and low-nickel laterite ore through gas composition, X-ray diffraction, and scanning electron microscope analyses. Results showed that a reduction reaction of Na2SO4 to SO2 was performed with roasting up to 600℃. However, no clear influence on iron and nickel reductions appeared, because only a small amount of Na2SO4 reacted to produce SO2. Na2SO4 reacted completely at 1000℃, mainly producing troilite and nepheline, which remarkably improves selective reduction of nickel. Furthermore, the production of low-melting-point minerals, including troilite and nepheline, accelerated nickel reduction and delayed iron reduction, which is attributed to the concurrent production of magnesium magnetite, whose structure is more stable than the structure of magnetite. Reduction reactions of Na2SO4 resulted in weakening of the reduction atmosphere, and the main product of Na2SO4 changed and delayed the reduction of iron. Eventually, iron metallization was effectively controlled during laterite ore reduction roasting, leading to iron mainly being found in wustite and high iron-containing olivine. 展开更多
关键词 laterite ore FERRONICKEL REDUCTION magnetic separation
下载PDF
Formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate by adding CaCO3 被引量:4
9
作者 Xiao-hui Li Jue Kou +2 位作者 ti-chang sun Shi-chao Wu Yong-qiang Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第6期745-753,共9页
The formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate(VTC)by adding CaCO3 was investigated.Thermodynamic analysis was employed to show the feasibility of calcium titan... The formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate(VTC)by adding CaCO3 was investigated.Thermodynamic analysis was employed to show the feasibility of calcium titanate formation by the reaction of ilmenite and Ca CO3 in a reductive atmosphere,where ilmenite is more easily reduced by CO or carbon in the presence of CaCO3.The effects of CaCO3 dosage and reduction temperature on the phase transformation and metallization degree were also investigated in an actual roasting test.Appropriate increase of CaCO3 dosages and reduction temperatures were found to be conducive to the formation of calcium titanate,and the optimum conditions were a CaCO3 dosage of 18 wt%and a reduction temperature of 1400°C.Additionally,scanning electron microscopy–energy dispersive spectrometry(SEM–EDS)analysis shows that calcium titanate produced via the carbothermic reduction of VTC by CaCO3 addition was of higher purity with particle size approximately 50μm.Hence,the separation of calcium titanate and metallic iron will be the focus in the future study. 展开更多
关键词 vanadium titanomagnetite concentrate calcium carbonate carbothermic reduction metallic iron calcium titanate
下载PDF
Feasibility of co-reduction roasting of a saprolitic laterite ore and waste red mud 被引量:4
10
作者 Xiao-ping Wang ti-chang sun +2 位作者 Jue Kou Zhao-chun Li Yu Tian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第6期591-597,共7页
Large scale utilization is still an urgent problem for waste red mud with a high content of alkaline metal component in the future.Laterite ores especially the saprolitic laterite ore are one refractory nickel resourc... Large scale utilization is still an urgent problem for waste red mud with a high content of alkaline metal component in the future.Laterite ores especially the saprolitic laterite ore are one refractory nickel resource,the nickel and iron of which can be effectively recovered by direct reduction and magnetic separation.Alkaline metal salts were usually added to enhance reduction of laterite ores.The feasibility of co-reduction roasting of a saprolitic laterite ore and red mud was investigated.Results show that the red mud addition promoted the reduction of the saprolitic laterite ore and the iron ores in the red mud were co-reduced and recovered.By adding 35wt%red mud,the nickel grade and recovery were 4.90wt%and 95.25wt%,and the corresponding iron grade and total recovery were 71.00wt%and 93.77wt%,respectively.The X-ray diffraction(XRD),scanning electron microscopy,and energy dispersive spectroscopy(SEM-EDS)analysis results revealed that red mud addition was helpful to increase the liquid phase and ferronickel grain growth.The chemical compositions"Ca O and Na_2O"in the red mud replaced Fe O to react with Si O_2 and Mg Si O_3 to form augite. 展开更多
关键词 laterite ore red mud reduction roasting phase transformation
下载PDF
Kinetics of the electrochemical process of galena electrodes in the diethyldithiocarbamate solution 被引量:2
11
作者 Li-li Cheng ti-chang sun +1 位作者 Xian-ping Luo Dian-zuo Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第6期669-674,共6页
The electrochemical process of galena in a pH 12.8 buffer solution was investigated using chronoamperometry and chronopotentiometry. To establish kinetic parameters on the surface of galena in the diethyldithiocarbama... The electrochemical process of galena in a pH 12.8 buffer solution was investigated using chronoamperometry and chronopotentiometry. To establish kinetic parameters on the surface of galena in the diethyldithiocarbamate solution, the exchange current density and the dependence of current density on reaction time were determined. Experimental results demonstrate that the exchange current density of galena is 1.585× 10^-2A/m2 in the diethyldithiocarbamate-free solution. In the diethyldithiocarbamate solution, the thickness of lead diethyldi- thiocarbamate adsorbed on the surface of galena is 3.28 molecular layers, the diffusion coefficient of diethyldithiocarbamate on the surface of galena electrodes is 1.13 × 10^-10 m2/s, and the exchange current density of galena is 0.45 A/m2. Lead diethyldithiocarbamate on the surface of galena is firmly adsorbed. 展开更多
关键词 GALENA ELECTROCHEMISTRY FLOTATION KINETICS
下载PDF
Thermodynamic analysis of the carbothermic reduction of a high-phosphorus oolitic iron ore by FactSage 被引量:8
12
作者 Wen Yu Qiong-yao Tang +1 位作者 Jiang-an Chen ti-chang sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第10期1126-1132,共7页
A thermodynamic analysis of the carbothermic reduction of high-phosphorus oolitic iron ore(HPOIO) was conducted by the Fact Sage thermochemical software. The effects of temperature, C/O ratio, additive types, and do... A thermodynamic analysis of the carbothermic reduction of high-phosphorus oolitic iron ore(HPOIO) was conducted by the Fact Sage thermochemical software. The effects of temperature, C/O ratio, additive types, and dosages both on the reduction of fluorapatite and the formation of liquid slag were studied. The results show that the minimum thermodynamic reduction temperature of fluorapatite by carbon decreases to about 850°C, which is mainly ascribed to the presence of SiO_2, Al_2O_3, and Fe. The reduction rate of fluorapatite increases and the amount of liquid slag decreases with the rise of C/O ratio. The reduction of fluorapatite is hindered by the addition of CaO and Na_2CO_3, thereby allowing the selective reduction of iron oxides upon controlled C/O ratio. The thermodynamic results obtain in the present work are in good agreement with the experimental results available in the literatures. 展开更多
关键词 thermodynamic analysis oolitic iron ore carbothermal reduction
下载PDF
Factor analysis on the purity of magnesium titanate directly prepared from seashore titanomagnetite concentrate through direct reduction
13
作者 Xiao-ping Wang Zhao-chun Li +2 位作者 ti-chang sun Jue Kou Xiao-hui Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第11期1462-1470,共9页
Magnesium titanate was prepared directly through external coal reduction of seashore titanomagnetite concentrate and magnesium oxide(MgO).The effects of roasting temperature and the type and dosage of reductants on th... Magnesium titanate was prepared directly through external coal reduction of seashore titanomagnetite concentrate and magnesium oxide(MgO).The effects of roasting temperature and the type and dosage of reductants on the purity of generated magnesium titanate particles were systematically investigated.Scanning electron microscopy and energy-dispersive spectroscopy analyses were performed to characterize the magnesium titanate particles and observe their purity under different conditions.Results showed that the roasting temperature remarkably influenced the purity of magnesium titanate.At 1200,1300,and 1400℃,some magnesium ferrite and magnesium aluminate spinel were dissolved in magnesium titanate.However,as the roasting temperature increased to 1500℃,relatively pure magnesium titanate particles were generated because no magnesium ferrite was dissolved in them.The type and dosage of the reductants also remarkably affected the purity of magnesium titanate.The amount of fine metallic iron disseminated in the magnesium titanate particles obviously decreased when lignite was used as a reductant at a dosage of 70wt%.Thus,high-purity magnesium titanate particles formed.At a roasting temperature of 1500℃and with 70wt%lignite,the magnesium titanate product with a yield of 30.63%and an iron content of 3.01wt%was obtained through magnetic separation. 展开更多
关键词 seashore titanomagnetite magnesium oxide direct reduction magnesium titanate
下载PDF
Effects of embedding direct reduction followed by magnetic separation on recovering titanium and iron of beach titanomagnetite concentrate 被引量:10
14
作者 Chao Geng ti-chang sun +2 位作者 You-wen Ma Cheng-yan Xu Hui-fen Yang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第2期156-164,共9页
Embedding direct reduction followed by magnetic separation was conducted to fully recover iron and titanium separately from beach titanomagnetite (TTM). The influences of reduction conditions, such as molar ratio of... Embedding direct reduction followed by magnetic separation was conducted to fully recover iron and titanium separately from beach titanomagnetite (TTM). The influences of reduction conditions, such as molar ratio of C to Fe, reduction time, and reduction temperature, were studied. The results showed that the TTM concentrate was reduced to iron and iron-titanium oxides, depending on the reduction time, and the reduction sequence at 1 200℃ was suggested as follows : Fe2.75 Ti0.25O4→Fe2TiO4→FeTiO3→FeTi2O5. The reduction temperature played a considerable role in the reduction of TTM concentrates. Increasing temperature from 1 100 to 1 200℃ was beneficial to recovering titanium and iron, whereas the results deteriorated as temperature increased further. The results of X-ray diffraction and scanning electron microscopy analyses showed that low temperature (≤1100℃) was unfavorable for the gasification of reductant, resulting in insufficient reducing atmosphere in the reduction process. The molten phase was formed at high temperatures of 1250-1 300℃, which accelerated the migration rate of metallic particles and suppressed the diffusion of reduction gas, resulting in poor reduction. The optimum conditions for reducing TTM concentrate are as follows: molar ratio of C to Fe of 1.68, reduction time of 150 min, and reduction temperature of 1 200℃. Under these conditions, direct reduction iron powder, assaying 90.28 mass% TFe and 1.73 mass% TiO2 with iron recovery of 90.85%, and titanium concentrate, assaying 46.24 mass% TiO2 with TiO2 recovery of 91.15%, were obtained. 展开更多
关键词 Titanomagnetite concentrate Direct reduction Reduction condition Direct reduction iron powder Magnetic separation
原文传递
Effect of Sodium Sulfate on Direct Reduction of Beach Titanomagnetite for Separation of Iron and Titanium 被引量:8
15
作者 En-xia GAO ti-chang sun +2 位作者 Zhi-guo LIU Chao GENG Cheng-yan XU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第5期428-433,共6页
The effect of sodium sulfate on direct reduction of beach titanomagnetite,followed by magnetic separation,to separate iron and titanium was investigated. Direct reduced iron( DRI) with a high Fe content,low TiO_2 co... The effect of sodium sulfate on direct reduction of beach titanomagnetite,followed by magnetic separation,to separate iron and titanium was investigated. Direct reduced iron( DRI) with a high Fe content,low TiO_2 content and low iron recovery was obtained after adding sodium sulfate. When the sodium sulfate dosage was increased from 0 to 10 mass%,the Fe content of the DRI increased from 90. 00 mass% to 93. 55 mass% and the TiO_2 content decreased from 1. 27 mass% to 0. 70 mass%. The reduction mechanism of sodium sulfate was investigated by X-ray diffraction( XRD) and scanning electron microscopy( SEM) with energy dispersive spectrometer( EDS). Results revealed that the metallic iron grains in the reduced ore with sodium sulfate were larger than those in the ore without sodium sulfate. Sodium sulfate promoted the migration of iron as well as the accumulation and growth of metallic iron grains by low-melting-point carnegieite and troilite formed in the redox system. Low-melting-point carnegieite decreased the melting point of the system and then promoted liquefaction. Troilite could decrease the surface tension and melting point of metallic iron grains. 展开更多
关键词 beach titanomagnetite sodium sulfate direct reduction separation iron titanium
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部