This paper presents a new aquathermolysis study of conventional heavy oil in superheated steam. A new high temperature autoclave was designed, where volume and pressure could be adjusted. Aquathermolysis was studied o...This paper presents a new aquathermolysis study of conventional heavy oil in superheated steam. A new high temperature autoclave was designed, where volume and pressure could be adjusted. Aquathermolysis was studied on two different conventional heavy oil samples under different reaction times and temperatures. Experimental results show that aquathermolysis does take place for conventional heavy oil. As reaction time increases, the oil viscosity reduces. However, the reaction will reach equilibrium after a certain period of time and won't be sensitive to any further reaction time any more. Analysis shows that, while resin and asphaltenes decrease, saturated hydrocarbons and the H/C ratio increase after reaction. The main mechanism of aquathermolysis includes hydrogenization, desulfuration reaction of resin and asphaltenes, etc.展开更多
Tu-Xian decoction(TXD),a traditional Chinese medicine(TCM)formula,has been frequently administered to manage diabetic cognitive impairment(DCI).Despite its widespread use,the mechanisms underlying TXD’s protective ef...Tu-Xian decoction(TXD),a traditional Chinese medicine(TCM)formula,has been frequently administered to manage diabetic cognitive impairment(DCI).Despite its widespread use,the mechanisms underlying TXD’s protective effects on DCI have yet to be fully elucidated.As a significant regulator in neurodegenerative conditions,death-associated protein kinase-1(DAPK-1)serves as a focus for understanding the action of TXD.This study was designed to whether TXD mediates its beneficial outcomes by inhibiting DAPK-1.To this end,a diabetic model was established using Sprague-Dawley(SD)rats through a high-fat,high-sugar(HFHS)diet regimen,followed by streptozotocin(STZ)injection.The experimental cohort was stratified into six groups:Control,Diabetic,TC-DAPK6,high-dose TXD,medium-dose TXD,and low-dose TXD groups.Following a 12-week treatment period,various assessments—including blood glucose levels,body weight measurements,Morris water maze(MWM)testing for cognitive function,brain magnetic resonance imaging(MRI),and histological analyses using hematoxylin-eosin(H&E),and Nissl staining—were conducted.Protein expression in the hippocampus was quantified through Western blotting analysis.The results revealed that TXD significantly improved spatial learning and memory abilities,and preserved hippocampal structure in diabetic rats.Importantly,TXD administration led to a down-regulation of proteins indicative of neurological damage and suppressed DAPK-1 activity within the hippocampal region.These results underscore TXD's potential in mitigating DCI via DAPK-1 inhibition,positioning it as a viable therapeutic candidate for addressing this condition.Further investigation into TXD's molecular mechanisms may elucidate new pathways for the treatment of DCI.展开更多
基金support from the National Natural Science Foundation of China(Grant No.50276040)is gratefully acknowledged.
文摘This paper presents a new aquathermolysis study of conventional heavy oil in superheated steam. A new high temperature autoclave was designed, where volume and pressure could be adjusted. Aquathermolysis was studied on two different conventional heavy oil samples under different reaction times and temperatures. Experimental results show that aquathermolysis does take place for conventional heavy oil. As reaction time increases, the oil viscosity reduces. However, the reaction will reach equilibrium after a certain period of time and won't be sensitive to any further reaction time any more. Analysis shows that, while resin and asphaltenes decrease, saturated hydrocarbons and the H/C ratio increase after reaction. The main mechanism of aquathermolysis includes hydrogenization, desulfuration reaction of resin and asphaltenes, etc.
基金This work was supported by the National Natural Science Foundation of China(No.82074404).
文摘Tu-Xian decoction(TXD),a traditional Chinese medicine(TCM)formula,has been frequently administered to manage diabetic cognitive impairment(DCI).Despite its widespread use,the mechanisms underlying TXD’s protective effects on DCI have yet to be fully elucidated.As a significant regulator in neurodegenerative conditions,death-associated protein kinase-1(DAPK-1)serves as a focus for understanding the action of TXD.This study was designed to whether TXD mediates its beneficial outcomes by inhibiting DAPK-1.To this end,a diabetic model was established using Sprague-Dawley(SD)rats through a high-fat,high-sugar(HFHS)diet regimen,followed by streptozotocin(STZ)injection.The experimental cohort was stratified into six groups:Control,Diabetic,TC-DAPK6,high-dose TXD,medium-dose TXD,and low-dose TXD groups.Following a 12-week treatment period,various assessments—including blood glucose levels,body weight measurements,Morris water maze(MWM)testing for cognitive function,brain magnetic resonance imaging(MRI),and histological analyses using hematoxylin-eosin(H&E),and Nissl staining—were conducted.Protein expression in the hippocampus was quantified through Western blotting analysis.The results revealed that TXD significantly improved spatial learning and memory abilities,and preserved hippocampal structure in diabetic rats.Importantly,TXD administration led to a down-regulation of proteins indicative of neurological damage and suppressed DAPK-1 activity within the hippocampal region.These results underscore TXD's potential in mitigating DCI via DAPK-1 inhibition,positioning it as a viable therapeutic candidate for addressing this condition.Further investigation into TXD's molecular mechanisms may elucidate new pathways for the treatment of DCI.