Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experi...Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems.展开更多
Fermentation substrates of rice with different milling degrees(MDs) were prepared and fermented with human feces to compare their fermentation properties and effects on gut microbiota.MD 0s,MD 5s and MD 60s represente...Fermentation substrates of rice with different milling degrees(MDs) were prepared and fermented with human feces to compare their fermentation properties and effects on gut microbiota.MD 0s,MD 5s and MD 60s represented brown rice,moderately-milled rice and white rice,respectively.After in vitro fermentation,the MD 5s group showed higher starch utilization,compared with the MD 0s and 60s groups evaluated by Fourier transform infrared spectrometer,and confocal laser scanning microscope.Effects of fermentation substrates of rice with different MDs on gut microbiota were evaluated by 16S rDNA sequencing.All the sample groups reduced the pH and produced short-chain fatty acids(SCFAs) and branched-chain fatty acids.The MD 5s group exhibited higher α-diversity than the MD 0s and 60s groups.Abundances of Phascolarctobacterium,Blautia and norank_f_Ruminococcaceae were higher in the MD 0s and 5s groups,compared with the MD 60s group.These bacteria were also positively correlated with the SCFAs production via Spearman correlation analysis.In vitro culture assay revealed that fermentation substrates of MD 0s and 5s promoted the growth of two probiotics(Akkermansia muciniphila and Bifidobacterium adolescentis).Our results showed that moderate milling might be an appropriate way to produce rice products with richer nutrients and better fermentation properties.展开更多
Molecule hydrogen(H_(2)) has been used to suppress tumor growth. To employ the H_(2) therapy, it is necessary to use a proper agent for continuous generation of H_(2). As a biodegradable metal, magnesium(Mg) generates...Molecule hydrogen(H_(2)) has been used to suppress tumor growth. To employ the H_(2) therapy, it is necessary to use a proper agent for continuous generation of H_(2). As a biodegradable metal, magnesium(Mg) generates H_(2) in an aqueous environment, but the H_(2) release rate is still too low. Here, we design a Mg-Al-Ca(AX) alloy that degrades very rapidly due to the presence of a secondary phase Al_(2)Ca. Having a reduction potential much higher than Mg and any other Mg-based secondary phases, Al_(2)Ca accelerates the corrosion of the Mg matrix by a micro-galvanic process. Al_(2)Ca also enhances the strength and ductility of the AX alloy. AX alloy rods show better anti-tumor efficacy than pure Mg rods in vivo. Moreover, implanted AX alloy rods can be heated under an alternating magnetic field to suppress large-size tumors.This work suggests that the H_(2) therapy using highly degradable Mg alloys may provide an effective cancer treatment.展开更多
Glucose transporter 1(GLUT1)overexpression in tumor cells is a potential target for drug therapy,but few studies have reported screening GLUT1 inhibitors from natural or synthetic compounds.With current analysis techn...Glucose transporter 1(GLUT1)overexpression in tumor cells is a potential target for drug therapy,but few studies have reported screening GLUT1 inhibitors from natural or synthetic compounds.With current analysis techniques,it is difficult to accurately monitor the GLUT1 inhibitory effect of drug molecules in real-time.We developed a cell membrane-based glucose sensor(CMGS)that integrated a hydrogel electrode with tumor cell membranes to monitor GLUT1 transmembrane transport and screen for GLUT1 inhibitors in traditional Chinese medicines(TCMs).CMGS is compatible with cell membranes of various origins,including different types of tumors and cell lines with GLUT1 expression knocked down by small interfering RNA or small molecules.Based on CMGS continuous monitoring technique,we investigated the glucose transport kinetics of cell membranes with varying levels of GLUT1 expression.We used CMGS to determine the GLUT1-inhibitory effects of drug monomers with similar structures from Scutellaria baicalensis and catechins families.Results were consistent with those of the cellular glucose uptake test and molecular-docking simulation.CMGS could accurately screen drug molecules in TCMs that inhibit GLUT1,providing a new strategy for studying transmembrane protein-receptor interactions.展开更多
Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the ...Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the complicated bit allocation to match the different signal-to-noise-ratios(SNRs) of different sub-channels. In this paper,we propose a geometric mean decomposition(GMD)-based hybrid precoding to avoid the complicated bit allocation. Specifically,we seek a pair of analog and digital precoders sufficiently close to the unconstrained fully digital GMD precoder. To achieve this, we fix the analog precoder to design the digital precoder, and vice versa. The analog precoder is designed based on the orthogonal matching pursuit(OMP) algorithm, while GMD is used to obtain the digital precoder. Simulations show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.展开更多
Objective:This study aimed to develop a new polyethylene glycol(PEG)ylatedβ-elemene liposome(PEG-Lipo-β-E)and evaluate its characterization,pharmacokinetics,antitumor effects and safety in vitro and in vivo.Methods:...Objective:This study aimed to develop a new polyethylene glycol(PEG)ylatedβ-elemene liposome(PEG-Lipo-β-E)and evaluate its characterization,pharmacokinetics,antitumor effects and safety in vitro and in vivo.Methods:The liposomes were prepared by ethanol injection and high-pressure micro-jet homogenization.Characterization of the liposomes was conducted,and drug content,entrapment efficiency(EE),in vitro release and stability were studied by ultra-fast liquid chromatography(UFLC)and a liquid surface method.Blood was drawn from rats to establish the pharmacokinetic parameters.The anticancer effect was evaluated in a KU-19-19 bladder cancer xenograft model.Histological analyses were performed to evaluate safety.Results:The PEG-Lipo-β-E showed good stability and was characterized as 83.31±0.181 nm in size,0.279±0.004 in polydispersity index(PDI),-21.4±1.06 mV in zeta potential,6.65±0.02 in pH,5.024±0.107 mg/mL inβ-elemene(β-E)content,and 95.53±1.712%in average EE.The Fourier transform infrared spectroscopy(FTIR)and differential scanning calorimetry(DSC)indicated the formation of PEG-Lipo-β-E.Compared to elemene injection,PEG-Lipo-β-E demonstrated a 1.75-fold decrease in clearance,a 1.62-fold increase in half-life,and a 1.76-fold increase in area under the concentration-time curves(AUCs)from 0 hour to 1.5 hours(P<0.05).PEG-Lipo-β-E also showed an enhanced anticancer effect in vivo.Histological analyses showed that there was no evidence of toxicity to the heart,kidney,liver,lung or spleen.Conclusions:The present study demonstrates PEG-Lipo-β-E as a new formulation with ease of preparation,high EE,good stability,improved bioavailability and antitumor effects.展开更多
Objective:In this study,we aimed to develop an amino-terminal fragment(ATF)peptide-targeted liposome carryingβ-elemene(ATF24-PEG-Lipo-β-E)for targeted delivery into urokinase plasminogen activator receptor-overexpre...Objective:In this study,we aimed to develop an amino-terminal fragment(ATF)peptide-targeted liposome carryingβ-elemene(ATF24-PEG-Lipo-β-E)for targeted delivery into urokinase plasminogen activator receptor-overexpressing bladder cancer cells combined with cisplatin(DDP)for bladder cancer treatment.Methods:The liposomes were prepared by ethanol injection and high-pressure microjet homogenization.The liposomes were characterized,and the drug content,entrapment efficiency,andin vitro release were studied.The targeting efficiency was investigated using confocal microscopy,ultra-fast liquid chromatography,and an orthotopic bladder cancer model.The effects of ATF24-PEG-Lipo-β-E combined with DDP on cell viability and proliferation were evaluated by a Cell Counting Kit-8(CCK-8)assay,a colony formation assay,and cell apoptosis and cell cycle analyses.The anticancer effects were evaluated in a KU-19-19 bladder cancer xenograft model.Results:ATF24-PEG-Lipo-β-E had small and uniform sizes(~79 nm),high drug loading capacity(~5.24 mg/mL),high entrapment efficiency(98.37±0.95%),and exhibited sustained drug release behavior.ATF24-PEG-Lipo-β-E had better targeting efficiency and higher cytotoxicity than polyethylene glycol(PEG)ylatedβ-elemene liposomes(PEG-Lipo-β-E).DDP,combined with ATF24-PEG-Lipo-β-E,exerted a synergistic effect on cellular apoptosis and cell arrest at the G2/M phase,and these effects were dependent on the caspase-dependent pathway and Cdc25C/Cdc2/cyclin B1 pathways.Furthermore,thein vivo antitumor activity showed that the targeted liposomes effectively inhibited the growth of tumors,using the combined strategy.Conclusions:The present study provided an effective strategy for the targeted delivery ofβ-elemene(β-E)to bladder cancer,and a combined strategy for bladder cancer treatment.展开更多
AIM: To perform a systematic meta-analysis to in- vestigate the association between X-ray repair crosscomplementing group 1 (XRCC1) polymorphisms and hepatocellular carcinoma (HCC) risk. METHODS: Relevant studie...AIM: To perform a systematic meta-analysis to in- vestigate the association between X-ray repair crosscomplementing group 1 (XRCC1) polymorphisms and hepatocellular carcinoma (HCC) risk. METHODS: Relevant studies extracted from PubMed, Embase, Wanfang, VIP and the Chinese National Knowledge Infrastructure databases up to March 2012 were included in the study. Stata software, version 11.0, was used for the statistical analysis. The odds ratios (ORs) and 95% confidence interval (CI) of the XRCC1 polymorphisms in HCC patients were analyzed and compared with healthy controls. The meta-analysis was performed using fixed-effect or random-effect methods, depending on the absence or presence of significant heterogeneity. RESULTS: Eleven studies with 2075 HCC cases and 2604 controls met our eligibility criteria (four studies, 888 cases and 938 controls for Arg194Trp, four studies, 858 cases and 880 controls for Arg280His, and nine studies, 1845 cases and 2401 controls for Arg399Gln). The meta-analysis revealed no associations between the Arg194Trp and Arg399GIn polymorphisms of the XRCC1 gene and HCC risk under all contrast models (codominant, dominant and recessive models) in the overall analysis and sensitivity analysis (the studies with controls not in the Hardy-Weinberg equilibrium were excluded). For XRCC1 Arg280His polymorphism, the overall analysis revealed the significant associa- tion between the His/His genotype and the increased risk of HCC (His/His vs Arg/Arg model, OR: 1.96, 95% CI: 1.03-3.75, P = 0.04). However, sensitivity analysis showed an altered pattern of result and non-significant association (OR: 2.06, 95% CI: 0.67-6.25, P = 0.20). The heterogeneity hypothesis test did not reveal any heterogeneity, and Begg's and Egger's tests did not find any obvious publication bias. CONCLUSION: The XRCC1 Arg194Trp and Arg399GIn polymorphisms are not associated with HCC risk. More rigorous association studies are needed to verify the involvement ofXRCC1 Arg280His polymorphism in HCC susceptibility.展开更多
Background:Traditional Chinese medicine(TCM)syndrome,also named syndrome,are comprehensive and integral analyses of clinical information which helps to guide different individualized treatment prescriptions.Methods:Th...Background:Traditional Chinese medicine(TCM)syndrome,also named syndrome,are comprehensive and integral analyses of clinical information which helps to guide different individualized treatment prescriptions.Methods:Thirty healthy controls and 80 colorectal cancer(CRC)patients(including 33 Spleen Qi Deficiency syndrome,23 Dampness Heat syndrome,17 Blood Stasis syndrome and 7 other syndrome)were enrolled into this study.Human mRNAs were extracted from peripheral blood mononuclear cells.The gene expression for CRC patients with different TCM syndrome was determined by microarray and qRT-PCR.Results:Spleen Qi Deficiency,Dampness Heat and Blood Stasis were the most common syndromes in CRC patients.There is a significant difference was found in mRNA expression levels(especially for PIK3CA,STAT3,SOX9 and KDM5C)among Spleen Qi Deficiency,Dampness Heat and Blood Stasis syndrome groups.The higher mRNA levels of JNK1,TP53,MLH1,MSH6,PMS2,SOCS3,TCF7L2,FAM123B,PSAP,FBXW7,SALL4 and the lower expression of inflammatory cytokine IL-6 were found in Spleen Qi Deficiency group but not other syndrome types.The higher mRNA levels of KRAS,MUC16,EGFR,GRASP65,PIK3CA,MAPK7,CD24,STAT3,SLC11A1,Bcl-2,TXNDC17 and some inflammatory cytokines(IL-6,IL-23,TNF-a,CXCR4)were found in Dampness Heat group but not other syndrome types.Blood Stasis syndrome showed higher expression of SOX9,MLH1,MSH6,KDM5C,PCDH11X,PSAP and SALL4,and lower mRNA levels of PIK3CA,CD24,STAT3,CXCR4,TXNDC17 and TP53.The CRC patients with Dampness Heat syndrome might have a poor prognosis than other syndrome types.Conclusion:The identification of syndrome conditions had different impacts on CRC prognosis,and which might be related with different mRNA expression levels.Some oncogenes and pro-inflammatory cytokines were highly expressed in Dampness Heat group but not other syndrome types,suggesting that the CRC patients with Dampness Heat syndrome might have a poor prognosis.Our results prelimitarily uncovered the molecular basis of syndrome differences in CRC prognosis,a better understanding for TCM treatment of CRC.展开更多
Objective:To establish a rat model of type 2 diabetes(T2DM)manifesting the Chinese medicine syndrome pattern of both qi and yin deficiency for evaluating the efficacy of a Chinese herbal formula(CHF),integrative medic...Objective:To establish a rat model of type 2 diabetes(T2DM)manifesting the Chinese medicine syndrome pattern of both qi and yin deficiency for evaluating the efficacy of a Chinese herbal formula(CHF),integrative medicine(IM),and pioglitazone(PIO)on T2DM indicators in the animal model.Methods:The rat model was induced by a high-fat diet(HFD)and streptozotocin(STZ,30 mg/kg).CHF(3.4 g/kg),PIO(2.7 mg/kg),and IM(3.4 g CHF+2.7 mg PIO)were administered to rats once daily for 14 days.Related laboratory parameters were observed.Results:Diabetic rats showed unsmooth fur,alopecia,reduced activity,huddling,somnolence,depression,pale or reddened tongue,damp/dark red tail,and high levels of water and food intake,urine volume,and stool weight,but weakened grip strength.Low levels of serum SOD,Nat-Kt-ATPase,cAMP/cGMP,and a high level of iNOS were observed.Hyperglycemia,hyperinsulinemia,insulin resistance,high levels of serum glucagon/IDE and pancreatic amylin,and low serum and pancreatic SS levels were evident as well.Conclusions:A rat model of T2DM with both qi and yin deficiency was successfully replicated.CHF appeared to be more efficacious than IM and PIO in the rat model of qi and yin deficiency pattern of T2DM,though IM and PIO were each found to have their merits and drawbacks in attenuating T2DM indicators in the rat model.展开更多
The self-diffusion problem of Brownian particles under the constraint of quasi-one-dimensional(q1 D) channel has raised wide concern.The hydrodynamic interaction(HI) plays an important role in many practical problems ...The self-diffusion problem of Brownian particles under the constraint of quasi-one-dimensional(q1 D) channel has raised wide concern.The hydrodynamic interaction(HI) plays an important role in many practical problems and two-body interactions remain dominant under q1D constraint.We measure the diffusion coefficient of individual ellipsoid when two ellipsoidal particles are close to each other by video-microscopy measurement.Meanwhile, we obtain the numerical simulation results of diffusion coefficient using finite element software.We find that the self-diffusion coefficient of the ellipsoid decreases exponentially with the decrease of their mutual distance X when X < X0, where X0 is the maximum distance of the ellipsoids to maintain their mutual influence, X0 and the variation rate are related to the aspect ratio p = a/b.The mean squared displacement(MSD) of the ellipsoids indicates that the self-diffusion appears as a crossover region, in which the diffusion coefficient increases as the time increases in the intermediate time regime, which is proven to be caused by the spatial variations affected by the hydrodynamic interactions.These findings indicate that hydrodynamic interaction can significantly affect the self-diffusion behavior of adjacent particles and has important implications to the research of microfluidic problems in blood vessels and bones, drug delivery, and lab-on-chip.展开更多
The CuO_x thin film photocathodes were deposited on F-doped Sn O_2 (FTO)transparent conducting glasses by alternating current(AC)magnetron reactive sputtering under different Ar:O_2 ratios.The advantage of this deposi...The CuO_x thin film photocathodes were deposited on F-doped Sn O_2 (FTO)transparent conducting glasses by alternating current(AC)magnetron reactive sputtering under different Ar:O_2 ratios.The advantage of this deposited method is that it can deposit a CuO_x thin film uniformly and rapidly with large scale.From the photoelectrochemical(PEC)properties of these CuO_x photocathodes,it can be found that the CuO_x photocathode with Ar/O_2 30:7 provide a photocurrent density ofà3.2 m A cm^(à2)under a bias potentialà0.5 V(vs.Ag/Ag Cl),which was found to be twice higher than that of Ar/O_2 with 30:5.A detailed characterization on the structure,morphology and electrochemical properties of these CuO_x thin film photocathodes was carried out,and it is found that the improved PEC performance of CuO_x semiconductor photocathode with Ar/O_230:7 attributed to the less defects in it,indicating that this Ar/O_230:7 is an optimized condition for excellent CuO_x semiconductor photocathode fabrication.展开更多
Myocardial ischemia–reperfusion injury(MIRI)is a major hindrance to the success of cardiac reperfusion therapy.Although increased neutrophil infiltration is a hallmark of MIRI,the subtypes and alterations of neutroph...Myocardial ischemia–reperfusion injury(MIRI)is a major hindrance to the success of cardiac reperfusion therapy.Although increased neutrophil infiltration is a hallmark of MIRI,the subtypes and alterations of neutrophils in this process remain unclear.Here,we performed single-cell sequencing of cardiac CD45^(+)cells isolated from the murine myocardium subjected to MIRI at six-time points.We identified diverse types of infiltrating immune cells and their dynamic changes during MIRI.Cardiac neutrophils showed the most immediate response and largest changes and featured with functionally heterogeneous subpopulations,including Ccl3^(hi)Neu and Ym-1^(hi)Neu,which were increased at 6 h and 1 d after reperfusion,respectively.Ym-1^(hi)Neu selectively expressed genes with protective effects and was,therefore,identified as a novel specific type of cardiac cell in the injured heart.Further analysis indicated that neutrophils and their subtypes orchestrated subsequent immune responses in the cardiac tissues,especially instructing the response of macrophages.The abundance of Ym-1^(hi)Neu was closely correlated with the therapeutic efficacy of MIRI when neutrophils were specifically targeted by anti-Lymphocyte antigen 6 complex locus G6D(Ly6G)or anti-Intercellular cell adhesion molecule-1(ICAM-1)neutralizing antibodies.In addition,a neutrophil subtype with the same phenotype as Ym-1^(hi)Neu was detected in clinical samples and correlated with prognosis.Ym-1 inhibition exacerbated myocardial injury,whereas Ym-1 supplementation significantly ameliorated injury in MIRI mice,which was attributed to the tilt of Ym-1 on the polarization of macrophages toward the repair phenotype in myocardial tissue.Overall,our findings reveal the antiinflammatory phenotype of Ym-1^(hi)Neu and highlight its critical role in myocardial protection during the early stages of MIRI.展开更多
Cancer occurrence and development are closely related to increased lipid produc-tion and glucose consumption.Lipids are the basic component of the cell membrane and play a significant role in cancer cell processes suc...Cancer occurrence and development are closely related to increased lipid produc-tion and glucose consumption.Lipids are the basic component of the cell membrane and play a significant role in cancer cell processes such as cell-to-cell recognition,signal transduction,and energy supply,which are vital for cancer cell rapid proliferation,invasion,and metastasis.Sterol regulatory element-binding transcription factor 1(SREBP1)is a key transcription factor regulating the expression of genes related to cholesterol biosynthesis,lipid homeostasis,and fatty acid synthesis.In addition,SREBP1 and its upstream or downstream target genes are implicated in various metabolic diseases,particularly cancer.However,no review of sREBP1 in cancer biology has yet been published.Herein,we summarized the roles and mechanisms of SREBP1 biological processes in cancer cells,including SREBP1 modification,lipid metabolism and reprogramming,glucose and mitochondrial metabolism,immunity,and tumor microenvi-ronment,epithelial-mesenchymal transition,cell cycle,apoptosis,and ferroptosis.Addition-ally,we discussed the potential role of SREBP1 in cancer prognosis,drug response such as drug sensitivity to chemotherapy and radiotherapy,and the potential drugs targeting SREBP1 and its corresponding pathway,elucidating the potential clinical application based on SREBP1 and its corresponding signal pathway.展开更多
Dietary fat content can reduce the methane production of dairy cows;however,the relevance fatty acid(FA)composition has towards this inhibitory effect is debatable.Furthermore,in-depth studies elucidating the effects ...Dietary fat content can reduce the methane production of dairy cows;however,the relevance fatty acid(FA)composition has towards this inhibitory effect is debatable.Furthermore,in-depth studies elucidating the effects of unsaturated fatty acids(UFA)on rumen function and the mechanism of reducing methane(CH4)production are lacking.This study exposed 10 Holstein cows with the same parity,similar milk yield to two total mixed rations:low unsaturated FA(LUFA)and high unsaturated FA(HUFA)with similar fat content.The LUFA group mainly added fat powder(C16:0>90%),and the HUFA group mainly replaced fat powder with extruded flaxseed.The experiment lasted 26 d,the last 5 d of which,gas exchange in respiratory chambers was conducted to measure gas emissions.We found that an increase in the UFA in diet did not affect milk production(P>0.05)and could align the profile of milk FAs more closely with modern human nutritional requirements.Furthermore,we found that increasing the UFA content in the diet lead to a decrease in the abundance of Methanobrevibacter in the rumen(|linear discriminant analysis[LDA]score|>2 and P 2 and P<0.05),which ultimately decreased CH4 production(P<0.05).Our results illustrated the mechanism involving decreased CH4 production when fed a UFA diet in dairy cows.We believe that our study provides new evidence to explore CH4 emission reduction measures for dairy cows.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0701202,No.2017YFB0701500 and No.2020YFB1505901)National Natural Science Foundation of China(General Program No.51474149,52072240)+3 种基金Shanghai Science and Technology Committee(No.18511109300)Science and Technology Commission of the CMC(2019JCJQZD27300)financial support from the University of Michigan and Shanghai Jiao Tong University joint funding,China(AE604401)Science and Technology Commission of Shanghai Municipality(No.18511109302).
文摘Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems.
基金supported by the National Natural Science Foundation of China (32202051)the Shanghai Sailing Program (21YF1431800, 20YF1433400)+1 种基金Shanghai Agriculture Applied Technology Development Program, China (2021-02-08-0012-F00780 )the National Key R&D Program of China (2022YFF1100104, 2023YFF1103404)。
文摘Fermentation substrates of rice with different milling degrees(MDs) were prepared and fermented with human feces to compare their fermentation properties and effects on gut microbiota.MD 0s,MD 5s and MD 60s represented brown rice,moderately-milled rice and white rice,respectively.After in vitro fermentation,the MD 5s group showed higher starch utilization,compared with the MD 0s and 60s groups evaluated by Fourier transform infrared spectrometer,and confocal laser scanning microscope.Effects of fermentation substrates of rice with different MDs on gut microbiota were evaluated by 16S rDNA sequencing.All the sample groups reduced the pH and produced short-chain fatty acids(SCFAs) and branched-chain fatty acids.The MD 5s group exhibited higher α-diversity than the MD 0s and 60s groups.Abundances of Phascolarctobacterium,Blautia and norank_f_Ruminococcaceae were higher in the MD 0s and 5s groups,compared with the MD 60s group.These bacteria were also positively correlated with the SCFAs production via Spearman correlation analysis.In vitro culture assay revealed that fermentation substrates of MD 0s and 5s promoted the growth of two probiotics(Akkermansia muciniphila and Bifidobacterium adolescentis).Our results showed that moderate milling might be an appropriate way to produce rice products with richer nutrients and better fermentation properties.
基金financially supported by Shanghai Rising-Star Program (20QA1405000)the National Natural Science Foundation of China (nos.U2032124 and 82204850)。
文摘Molecule hydrogen(H_(2)) has been used to suppress tumor growth. To employ the H_(2) therapy, it is necessary to use a proper agent for continuous generation of H_(2). As a biodegradable metal, magnesium(Mg) generates H_(2) in an aqueous environment, but the H_(2) release rate is still too low. Here, we design a Mg-Al-Ca(AX) alloy that degrades very rapidly due to the presence of a secondary phase Al_(2)Ca. Having a reduction potential much higher than Mg and any other Mg-based secondary phases, Al_(2)Ca accelerates the corrosion of the Mg matrix by a micro-galvanic process. Al_(2)Ca also enhances the strength and ductility of the AX alloy. AX alloy rods show better anti-tumor efficacy than pure Mg rods in vivo. Moreover, implanted AX alloy rods can be heated under an alternating magnetic field to suppress large-size tumors.This work suggests that the H_(2) therapy using highly degradable Mg alloys may provide an effective cancer treatment.
基金supported by the National Natural Science Foundation of China,China(Grant Nos.:61801160 and 81730108).
文摘Glucose transporter 1(GLUT1)overexpression in tumor cells is a potential target for drug therapy,but few studies have reported screening GLUT1 inhibitors from natural or synthetic compounds.With current analysis techniques,it is difficult to accurately monitor the GLUT1 inhibitory effect of drug molecules in real-time.We developed a cell membrane-based glucose sensor(CMGS)that integrated a hydrogel electrode with tumor cell membranes to monitor GLUT1 transmembrane transport and screen for GLUT1 inhibitors in traditional Chinese medicines(TCMs).CMGS is compatible with cell membranes of various origins,including different types of tumors and cell lines with GLUT1 expression knocked down by small interfering RNA or small molecules.Based on CMGS continuous monitoring technique,we investigated the glucose transport kinetics of cell membranes with varying levels of GLUT1 expression.We used CMGS to determine the GLUT1-inhibitory effects of drug monomers with similar structures from Scutellaria baicalensis and catechins families.Results were consistent with those of the cellular glucose uptake test and molecular-docking simulation.CMGS could accurately screen drug molecules in TCMs that inhibit GLUT1,providing a new strategy for studying transmembrane protein-receptor interactions.
基金supported by the National Natural Science Foundation of China for Outstanding Young Scholars (Grant No. 61722109)the National Natural Science Foundation of China (Grant No. 61571270)the Royal Academy of Engineering through the UK–China Industry Academia Partnership Programme Scheme (Grant No. UK-CIAPP\49)
文摘Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the complicated bit allocation to match the different signal-to-noise-ratios(SNRs) of different sub-channels. In this paper,we propose a geometric mean decomposition(GMD)-based hybrid precoding to avoid the complicated bit allocation. Specifically,we seek a pair of analog and digital precoders sufficiently close to the unconstrained fully digital GMD precoder. To achieve this, we fix the analog precoder to design the digital precoder, and vice versa. The analog precoder is designed based on the orthogonal matching pursuit(OMP) algorithm, while GMD is used to obtain the digital precoder. Simulations show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.
基金supported by grants from National Natural Science Foundation of China(Grant No.81672932,81874380 and 81730108)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(Grant No.LR18H160001)+7 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LY15H160028 and LY13H130002)the Science and Technology Development Fund,Macao SAR(130/2017/A3,0099/2018/A3)Zhejiang Province Medical Science and Technology Project(Grant No.2017RC007)Key Project of Zhejiang Province Ministry of Science and Technology(Grant No.2015C03055)Talent Project of Zhejiang Association for Science and Technology(Grant No.2017YCGC002)Zhejiang Province Science and Technology Project of TCM(Grant No.2019ZZ016)Key Project of Hangzhou Ministry of Science and Technology(Grant No.20162013A07,20142013A63)Zhejiang Provincial Project for the Key Discipline of Traditional Chinese Medicine(Grant No.2017-XK-A09)。
文摘Objective:This study aimed to develop a new polyethylene glycol(PEG)ylatedβ-elemene liposome(PEG-Lipo-β-E)and evaluate its characterization,pharmacokinetics,antitumor effects and safety in vitro and in vivo.Methods:The liposomes were prepared by ethanol injection and high-pressure micro-jet homogenization.Characterization of the liposomes was conducted,and drug content,entrapment efficiency(EE),in vitro release and stability were studied by ultra-fast liquid chromatography(UFLC)and a liquid surface method.Blood was drawn from rats to establish the pharmacokinetic parameters.The anticancer effect was evaluated in a KU-19-19 bladder cancer xenograft model.Histological analyses were performed to evaluate safety.Results:The PEG-Lipo-β-E showed good stability and was characterized as 83.31±0.181 nm in size,0.279±0.004 in polydispersity index(PDI),-21.4±1.06 mV in zeta potential,6.65±0.02 in pH,5.024±0.107 mg/mL inβ-elemene(β-E)content,and 95.53±1.712%in average EE.The Fourier transform infrared spectroscopy(FTIR)and differential scanning calorimetry(DSC)indicated the formation of PEG-Lipo-β-E.Compared to elemene injection,PEG-Lipo-β-E demonstrated a 1.75-fold decrease in clearance,a 1.62-fold increase in half-life,and a 1.76-fold increase in area under the concentration-time curves(AUCs)from 0 hour to 1.5 hours(P<0.05).PEG-Lipo-β-E also showed an enhanced anticancer effect in vivo.Histological analyses showed that there was no evidence of toxicity to the heart,kidney,liver,lung or spleen.Conclusions:The present study demonstrates PEG-Lipo-β-E as a new formulation with ease of preparation,high EE,good stability,improved bioavailability and antitumor effects.
基金This research was supported by grants from the National Natural Science Foundation of China(Grant Nos.81672932,81730108,81874380,and 81973635)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(Grant No.LR18H160001)the Zhejiang Province Science and Technology Project of TCM(Grant No.2019ZZ016).
文摘Objective:In this study,we aimed to develop an amino-terminal fragment(ATF)peptide-targeted liposome carryingβ-elemene(ATF24-PEG-Lipo-β-E)for targeted delivery into urokinase plasminogen activator receptor-overexpressing bladder cancer cells combined with cisplatin(DDP)for bladder cancer treatment.Methods:The liposomes were prepared by ethanol injection and high-pressure microjet homogenization.The liposomes were characterized,and the drug content,entrapment efficiency,andin vitro release were studied.The targeting efficiency was investigated using confocal microscopy,ultra-fast liquid chromatography,and an orthotopic bladder cancer model.The effects of ATF24-PEG-Lipo-β-E combined with DDP on cell viability and proliferation were evaluated by a Cell Counting Kit-8(CCK-8)assay,a colony formation assay,and cell apoptosis and cell cycle analyses.The anticancer effects were evaluated in a KU-19-19 bladder cancer xenograft model.Results:ATF24-PEG-Lipo-β-E had small and uniform sizes(~79 nm),high drug loading capacity(~5.24 mg/mL),high entrapment efficiency(98.37±0.95%),and exhibited sustained drug release behavior.ATF24-PEG-Lipo-β-E had better targeting efficiency and higher cytotoxicity than polyethylene glycol(PEG)ylatedβ-elemene liposomes(PEG-Lipo-β-E).DDP,combined with ATF24-PEG-Lipo-β-E,exerted a synergistic effect on cellular apoptosis and cell arrest at the G2/M phase,and these effects were dependent on the caspase-dependent pathway and Cdc25C/Cdc2/cyclin B1 pathways.Furthermore,thein vivo antitumor activity showed that the targeted liposomes effectively inhibited the growth of tumors,using the combined strategy.Conclusions:The present study provided an effective strategy for the targeted delivery ofβ-elemene(β-E)to bladder cancer,and a combined strategy for bladder cancer treatment.
基金Supported by International Science and Technology Cooperation Program of the Ministry of Science and Technology,No.010S2012ZR0058the National Basic Research Program of China,No. 2012CB526706+2 种基金the Innovation Program of Shanghai Municipal Education Commission,No.13ZZ060the Fund of Shanghai Municipal Health Bureau,No. 2008Y077the Special Program for Military Medicine,No. 2010JS15
文摘AIM: To perform a systematic meta-analysis to in- vestigate the association between X-ray repair crosscomplementing group 1 (XRCC1) polymorphisms and hepatocellular carcinoma (HCC) risk. METHODS: Relevant studies extracted from PubMed, Embase, Wanfang, VIP and the Chinese National Knowledge Infrastructure databases up to March 2012 were included in the study. Stata software, version 11.0, was used for the statistical analysis. The odds ratios (ORs) and 95% confidence interval (CI) of the XRCC1 polymorphisms in HCC patients were analyzed and compared with healthy controls. The meta-analysis was performed using fixed-effect or random-effect methods, depending on the absence or presence of significant heterogeneity. RESULTS: Eleven studies with 2075 HCC cases and 2604 controls met our eligibility criteria (four studies, 888 cases and 938 controls for Arg194Trp, four studies, 858 cases and 880 controls for Arg280His, and nine studies, 1845 cases and 2401 controls for Arg399Gln). The meta-analysis revealed no associations between the Arg194Trp and Arg399GIn polymorphisms of the XRCC1 gene and HCC risk under all contrast models (codominant, dominant and recessive models) in the overall analysis and sensitivity analysis (the studies with controls not in the Hardy-Weinberg equilibrium were excluded). For XRCC1 Arg280His polymorphism, the overall analysis revealed the significant associa- tion between the His/His genotype and the increased risk of HCC (His/His vs Arg/Arg model, OR: 1.96, 95% CI: 1.03-3.75, P = 0.04). However, sensitivity analysis showed an altered pattern of result and non-significant association (OR: 2.06, 95% CI: 0.67-6.25, P = 0.20). The heterogeneity hypothesis test did not reveal any heterogeneity, and Begg's and Egger's tests did not find any obvious publication bias. CONCLUSION: The XRCC1 Arg194Trp and Arg399GIn polymorphisms are not associated with HCC risk. More rigorous association studies are needed to verify the involvement ofXRCC1 Arg280His polymorphism in HCC susceptibility.
基金This research was supported by grants from National Natural Science Foundation of China(grant No.81874380,81672932,81730108 and 81973635)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(grant No.LR18H160001)+6 种基金Zhejiang Province Science and Technology Project of TCM(grant No.2019ZZ016)Zhejiang Province Medical Science and Technology Project(grant No.2017RC007)Talent Project of Zhejiang Association for Science and Technology(grant No.2017YCGC002)Key Project of Hangzhou Ministry of Science and Technology(grant No.20162013A07)Zhejiang Provincial Project for the Key Discipline of Traditional Chinese Medicine(grant No.2017-XK-A09)the Open Project Program of Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica(No.JKLPSE201807)the Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Background:Traditional Chinese medicine(TCM)syndrome,also named syndrome,are comprehensive and integral analyses of clinical information which helps to guide different individualized treatment prescriptions.Methods:Thirty healthy controls and 80 colorectal cancer(CRC)patients(including 33 Spleen Qi Deficiency syndrome,23 Dampness Heat syndrome,17 Blood Stasis syndrome and 7 other syndrome)were enrolled into this study.Human mRNAs were extracted from peripheral blood mononuclear cells.The gene expression for CRC patients with different TCM syndrome was determined by microarray and qRT-PCR.Results:Spleen Qi Deficiency,Dampness Heat and Blood Stasis were the most common syndromes in CRC patients.There is a significant difference was found in mRNA expression levels(especially for PIK3CA,STAT3,SOX9 and KDM5C)among Spleen Qi Deficiency,Dampness Heat and Blood Stasis syndrome groups.The higher mRNA levels of JNK1,TP53,MLH1,MSH6,PMS2,SOCS3,TCF7L2,FAM123B,PSAP,FBXW7,SALL4 and the lower expression of inflammatory cytokine IL-6 were found in Spleen Qi Deficiency group but not other syndrome types.The higher mRNA levels of KRAS,MUC16,EGFR,GRASP65,PIK3CA,MAPK7,CD24,STAT3,SLC11A1,Bcl-2,TXNDC17 and some inflammatory cytokines(IL-6,IL-23,TNF-a,CXCR4)were found in Dampness Heat group but not other syndrome types.Blood Stasis syndrome showed higher expression of SOX9,MLH1,MSH6,KDM5C,PCDH11X,PSAP and SALL4,and lower mRNA levels of PIK3CA,CD24,STAT3,CXCR4,TXNDC17 and TP53.The CRC patients with Dampness Heat syndrome might have a poor prognosis than other syndrome types.Conclusion:The identification of syndrome conditions had different impacts on CRC prognosis,and which might be related with different mRNA expression levels.Some oncogenes and pro-inflammatory cytokines were highly expressed in Dampness Heat group but not other syndrome types,suggesting that the CRC patients with Dampness Heat syndrome might have a poor prognosis.Our results prelimitarily uncovered the molecular basis of syndrome differences in CRC prognosis,a better understanding for TCM treatment of CRC.
基金the National Natural Science Foundation of China(Grant No.81373541).
文摘Objective:To establish a rat model of type 2 diabetes(T2DM)manifesting the Chinese medicine syndrome pattern of both qi and yin deficiency for evaluating the efficacy of a Chinese herbal formula(CHF),integrative medicine(IM),and pioglitazone(PIO)on T2DM indicators in the animal model.Methods:The rat model was induced by a high-fat diet(HFD)and streptozotocin(STZ,30 mg/kg).CHF(3.4 g/kg),PIO(2.7 mg/kg),and IM(3.4 g CHF+2.7 mg PIO)were administered to rats once daily for 14 days.Related laboratory parameters were observed.Results:Diabetic rats showed unsmooth fur,alopecia,reduced activity,huddling,somnolence,depression,pale or reddened tongue,damp/dark red tail,and high levels of water and food intake,urine volume,and stool weight,but weakened grip strength.Low levels of serum SOD,Nat-Kt-ATPase,cAMP/cGMP,and a high level of iNOS were observed.Hyperglycemia,hyperinsulinemia,insulin resistance,high levels of serum glucagon/IDE and pancreatic amylin,and low serum and pancreatic SS levels were evident as well.Conclusions:A rat model of T2DM with both qi and yin deficiency was successfully replicated.CHF appeared to be more efficacious than IM and PIO in the rat model of qi and yin deficiency pattern of T2DM,though IM and PIO were each found to have their merits and drawbacks in attenuating T2DM indicators in the rat model.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.U1738118 and 11372314)the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(A)(Grant Nos.XDA04020202 and XDA04020406)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB22040301)
文摘The self-diffusion problem of Brownian particles under the constraint of quasi-one-dimensional(q1 D) channel has raised wide concern.The hydrodynamic interaction(HI) plays an important role in many practical problems and two-body interactions remain dominant under q1D constraint.We measure the diffusion coefficient of individual ellipsoid when two ellipsoidal particles are close to each other by video-microscopy measurement.Meanwhile, we obtain the numerical simulation results of diffusion coefficient using finite element software.We find that the self-diffusion coefficient of the ellipsoid decreases exponentially with the decrease of their mutual distance X when X < X0, where X0 is the maximum distance of the ellipsoids to maintain their mutual influence, X0 and the variation rate are related to the aspect ratio p = a/b.The mean squared displacement(MSD) of the ellipsoids indicates that the self-diffusion appears as a crossover region, in which the diffusion coefficient increases as the time increases in the intermediate time regime, which is proven to be caused by the spatial variations affected by the hydrodynamic interactions.These findings indicate that hydrodynamic interaction can significantly affect the self-diffusion behavior of adjacent particles and has important implications to the research of microfluidic problems in blood vessels and bones, drug delivery, and lab-on-chip.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 41506093)
文摘The CuO_x thin film photocathodes were deposited on F-doped Sn O_2 (FTO)transparent conducting glasses by alternating current(AC)magnetron reactive sputtering under different Ar:O_2 ratios.The advantage of this deposited method is that it can deposit a CuO_x thin film uniformly and rapidly with large scale.From the photoelectrochemical(PEC)properties of these CuO_x photocathodes,it can be found that the CuO_x photocathode with Ar/O_2 30:7 provide a photocurrent density ofà3.2 m A cm^(à2)under a bias potentialà0.5 V(vs.Ag/Ag Cl),which was found to be twice higher than that of Ar/O_2 with 30:5.A detailed characterization on the structure,morphology and electrochemical properties of these CuO_x thin film photocathodes was carried out,and it is found that the improved PEC performance of CuO_x semiconductor photocathode with Ar/O_230:7 attributed to the less defects in it,indicating that this Ar/O_230:7 is an optimized condition for excellent CuO_x semiconductor photocathode fabrication.
基金supported by the National Natural Science Foundation of China(82022076,81974249,82070136,82104488,and 82305194)the Postdoctoral Science Foundation of China(2023M731222,and 2020T130040ZX)the Foundation of Hubei Key Laboratory of Biological Targeted Therapy(2023swbx021)。
文摘Myocardial ischemia–reperfusion injury(MIRI)is a major hindrance to the success of cardiac reperfusion therapy.Although increased neutrophil infiltration is a hallmark of MIRI,the subtypes and alterations of neutrophils in this process remain unclear.Here,we performed single-cell sequencing of cardiac CD45^(+)cells isolated from the murine myocardium subjected to MIRI at six-time points.We identified diverse types of infiltrating immune cells and their dynamic changes during MIRI.Cardiac neutrophils showed the most immediate response and largest changes and featured with functionally heterogeneous subpopulations,including Ccl3^(hi)Neu and Ym-1^(hi)Neu,which were increased at 6 h and 1 d after reperfusion,respectively.Ym-1^(hi)Neu selectively expressed genes with protective effects and was,therefore,identified as a novel specific type of cardiac cell in the injured heart.Further analysis indicated that neutrophils and their subtypes orchestrated subsequent immune responses in the cardiac tissues,especially instructing the response of macrophages.The abundance of Ym-1^(hi)Neu was closely correlated with the therapeutic efficacy of MIRI when neutrophils were specifically targeted by anti-Lymphocyte antigen 6 complex locus G6D(Ly6G)or anti-Intercellular cell adhesion molecule-1(ICAM-1)neutralizing antibodies.In addition,a neutrophil subtype with the same phenotype as Ym-1^(hi)Neu was detected in clinical samples and correlated with prognosis.Ym-1 inhibition exacerbated myocardial injury,whereas Ym-1 supplementation significantly ameliorated injury in MIRI mice,which was attributed to the tilt of Ym-1 on the polarization of macrophages toward the repair phenotype in myocardial tissue.Overall,our findings reveal the antiinflammatory phenotype of Ym-1^(hi)Neu and highlight its critical role in myocardial protection during the early stages of MIRI.
基金supported by the National Natural Science Foundation of China(No.81802371)China Scholarship Council(No.201908330151)+4 种基金Zhejiang Provincial Natural Science Foundation(China)(No.LQ17H160009)Zhejiang Province Medical Science and Technology Project(China)(No.2018KY108,2021RC117)Zhejiang Traditional Chinese Medicine Scientific Research Fund Project(China)(No.2022ZB230)Hangzhou Health Science and Technology Major Project(Zhejiang,China)(No.Z20230119)Hangzhou Agricultural and Social Development Scientific Research Independent Application Project(Zhejiang,China)(No.20191203B22).
文摘Cancer occurrence and development are closely related to increased lipid produc-tion and glucose consumption.Lipids are the basic component of the cell membrane and play a significant role in cancer cell processes such as cell-to-cell recognition,signal transduction,and energy supply,which are vital for cancer cell rapid proliferation,invasion,and metastasis.Sterol regulatory element-binding transcription factor 1(SREBP1)is a key transcription factor regulating the expression of genes related to cholesterol biosynthesis,lipid homeostasis,and fatty acid synthesis.In addition,SREBP1 and its upstream or downstream target genes are implicated in various metabolic diseases,particularly cancer.However,no review of sREBP1 in cancer biology has yet been published.Herein,we summarized the roles and mechanisms of SREBP1 biological processes in cancer cells,including SREBP1 modification,lipid metabolism and reprogramming,glucose and mitochondrial metabolism,immunity,and tumor microenvi-ronment,epithelial-mesenchymal transition,cell cycle,apoptosis,and ferroptosis.Addition-ally,we discussed the potential role of SREBP1 in cancer prognosis,drug response such as drug sensitivity to chemotherapy and radiotherapy,and the potential drugs targeting SREBP1 and its corresponding pathway,elucidating the potential clinical application based on SREBP1 and its corresponding signal pathway.
基金supported by the National Key R&D Program of China (No.2022YFD1301001).
文摘Dietary fat content can reduce the methane production of dairy cows;however,the relevance fatty acid(FA)composition has towards this inhibitory effect is debatable.Furthermore,in-depth studies elucidating the effects of unsaturated fatty acids(UFA)on rumen function and the mechanism of reducing methane(CH4)production are lacking.This study exposed 10 Holstein cows with the same parity,similar milk yield to two total mixed rations:low unsaturated FA(LUFA)and high unsaturated FA(HUFA)with similar fat content.The LUFA group mainly added fat powder(C16:0>90%),and the HUFA group mainly replaced fat powder with extruded flaxseed.The experiment lasted 26 d,the last 5 d of which,gas exchange in respiratory chambers was conducted to measure gas emissions.We found that an increase in the UFA in diet did not affect milk production(P>0.05)and could align the profile of milk FAs more closely with modern human nutritional requirements.Furthermore,we found that increasing the UFA content in the diet lead to a decrease in the abundance of Methanobrevibacter in the rumen(|linear discriminant analysis[LDA]score|>2 and P 2 and P<0.05),which ultimately decreased CH4 production(P<0.05).Our results illustrated the mechanism involving decreased CH4 production when fed a UFA diet in dairy cows.We believe that our study provides new evidence to explore CH4 emission reduction measures for dairy cows.