With an urgent demand of energy efficientcoatings for building fenestrations, vanadium dioxide(VO2)-based thermochromic smart coatings have beenwidely investigated due to the reversible phase transition ofVO2 at a c...With an urgent demand of energy efficientcoatings for building fenestrations, vanadium dioxide(VO2)-based thermochromic smart coatings have beenwidely investigated due to the reversible phase transition ofVO2 at a critical transition temperature of 68 ℃, which isaccompanied by the modulation of solar irradiation, espe-cially in the near-infrared region. As for commercialapplications in our daily life, there are still some obstaclesfor VO2-based smart coatings, such as the high phasetransition temperature, optical properties (luminous trans-mittance and solar modulation ability), environmental sta-bility in a long-time period, as well as mass production. Inthis review, recent progress of thermochromic smart coat-ings to solve above obstacles has been surveyed. Mean-while, future development trends have also been given topromote the goal of commercial production of VO2 smartcoatings.展开更多
文摘With an urgent demand of energy efficientcoatings for building fenestrations, vanadium dioxide(VO2)-based thermochromic smart coatings have beenwidely investigated due to the reversible phase transition ofVO2 at a critical transition temperature of 68 ℃, which isaccompanied by the modulation of solar irradiation, espe-cially in the near-infrared region. As for commercialapplications in our daily life, there are still some obstaclesfor VO2-based smart coatings, such as the high phasetransition temperature, optical properties (luminous trans-mittance and solar modulation ability), environmental sta-bility in a long-time period, as well as mass production. Inthis review, recent progress of thermochromic smart coat-ings to solve above obstacles has been surveyed. Mean-while, future development trends have also been given topromote the goal of commercial production of VO2 smartcoatings.