For the petroleum industry, to reduce the risk of a gas explosion in dangerous working areas, the use of explosion-proof equipment such as air-driven devices which are free from explosions becomes essential. Moreover,...For the petroleum industry, to reduce the risk of a gas explosion in dangerous working areas, the use of explosion-proof equipment such as air-driven devices which are free from explosions becomes essential. Moreover, for the purpose of saving manpower, a remote operation using a robot via a visual monitoring system and a network is used. However, to overcome the drawback of costly manpower and to improve safety in explosion-prone zones, a three-axis robot using a remote network control system is proposed. In this paper, the three-axis robot can be monitored online via the USB protocol. Furthermore, it also can be remotely manipulated via the TCP/IP protocol by clicking the command of the VB interface on the client pc. Consequently, the remote-control three-axis robot can not only work for people in severe and dangerous circumstances but also can reduce the cost of manpower.展开更多
Tool wear is frequently considered in the modern CNC (computer numerical control) turning industry. Most existing optimization researches for CNC finish turning were either accomplished within certain manufacturing ci...Tool wear is frequently considered in the modern CNC (computer numerical control) turning industry. Most existing optimization researches for CNC finish turning were either accomplished within certain manufacturing circumstances, or achieved through numerous equipment operations. Therefore, a general deduction optimization scheme proposed is deemed to be necessary for the industry. In this paper, four parameters (cutting depth, feed rate, speed, tool nose runoff) with three levels (low, medium, high) are considered to optimize the tool wear for finish turning based on orthogonal array. Additionally, nine fuzzy control rules using triangle membership function with respective to five linguistic grades for tool wear are constructed. Considering four input and twenty output intervals, the defuzzification using center of gravity is then completed and introduced as the S/N (signal-to-noise) ratio. Thus, the optimum general deduction parameters can then be received. The confirmation experiment for optimum general deduction parameters is furthermore performed on an ECOCA-3807 CNC lathe. It is shown that the tool wear ratio from the fuzzy deduction optimization parameters is significantly advanced comparing to those from benchmark. This paper not only proposes a general deduction optimization scheme using orthogonal array, but also contributes the satisfactory fuzzy linguistic approach to tool wear in CNC turning with profound insight.展开更多
文摘For the petroleum industry, to reduce the risk of a gas explosion in dangerous working areas, the use of explosion-proof equipment such as air-driven devices which are free from explosions becomes essential. Moreover, for the purpose of saving manpower, a remote operation using a robot via a visual monitoring system and a network is used. However, to overcome the drawback of costly manpower and to improve safety in explosion-prone zones, a three-axis robot using a remote network control system is proposed. In this paper, the three-axis robot can be monitored online via the USB protocol. Furthermore, it also can be remotely manipulated via the TCP/IP protocol by clicking the command of the VB interface on the client pc. Consequently, the remote-control three-axis robot can not only work for people in severe and dangerous circumstances but also can reduce the cost of manpower.
文摘Tool wear is frequently considered in the modern CNC (computer numerical control) turning industry. Most existing optimization researches for CNC finish turning were either accomplished within certain manufacturing circumstances, or achieved through numerous equipment operations. Therefore, a general deduction optimization scheme proposed is deemed to be necessary for the industry. In this paper, four parameters (cutting depth, feed rate, speed, tool nose runoff) with three levels (low, medium, high) are considered to optimize the tool wear for finish turning based on orthogonal array. Additionally, nine fuzzy control rules using triangle membership function with respective to five linguistic grades for tool wear are constructed. Considering four input and twenty output intervals, the defuzzification using center of gravity is then completed and introduced as the S/N (signal-to-noise) ratio. Thus, the optimum general deduction parameters can then be received. The confirmation experiment for optimum general deduction parameters is furthermore performed on an ECOCA-3807 CNC lathe. It is shown that the tool wear ratio from the fuzzy deduction optimization parameters is significantly advanced comparing to those from benchmark. This paper not only proposes a general deduction optimization scheme using orthogonal array, but also contributes the satisfactory fuzzy linguistic approach to tool wear in CNC turning with profound insight.