Objective Icariin(ICA)has a good neuroprotective effect and can upregulate neuronal basal autophagy in naturally aging rats.Mitochondrial dysfunction is associated with brain aging-related neurodegenerative diseases.A...Objective Icariin(ICA)has a good neuroprotective effect and can upregulate neuronal basal autophagy in naturally aging rats.Mitochondrial dysfunction is associated with brain aging-related neurodegenerative diseases.Abnormal opening of the mitochondrial permeability transition pore(mPTP)is a crucial factor in mitochondrial dysfunction and is associated with excessive autophagy.This study aimed to explore that ICA protects against neuronal injury by blocking the mPTP opening and down-regulating autophagy levels in a D-galactose(D-gal)-induced cell injury model.Methods A cell model of neuronal injury was established in rat pheochromocytoma cells(PC12 cells)treated with 200 mmol/L D-gal for 48 h.In this cell model,PC12 cells were pre-treated with different concentrations of ICA for 24 h.MTT was used to detect cell viability.Senescence associatedβ-galactosidase(SA-β-Gal)staining was used to observe cell senescence.Western blot analysis was performed to detect the expression levels of a senescence-related protein(p21),autophagy markers(LC3B,p62,Atg7,Atg5 and Beclin 1),mitochondrial fission and fusion-related proteins(Drp1,Mfn2 and Opa1),and mitophagy markers(Pink1 and Parkin).The changes of autophagic flow were detected by using mRFP-GFP-LC3 adenovirus.The intracellular ultrastructure was observed by transmission electron microscopy.Immunofluorescence was used to detect mPTP,mitochondrial membrane potential(MMP),mitochondrial reactive oxygen species(mtROS)and ROS levels.ROS and apoptosis levels were detected by flow cytometry.Results D-gal treatment significantly decreased the viability of PC12 cells,and markedly increased the SA-β-Gal positive cells as compared to the control group.With the D-gal stimulation,the expression of p21 was significantly up-regulated.Furthermore,D-gal stimulation resulted in an elevated LC3B II/I ratio and decreased p62 expression.Meanwhile,autophagosomes and autolysosomes were significantly increased,indicating abnormal activation of autophagy levels.In addition,in this D-gal-induced model of cell injury,the mPTP was abnormally open,the ROS generation was continuously increased,the MMP was gradually decreased,and the apoptosis was increased.ICA effectively improved mitochondrial dysfunction to protect against D-gal-induced cell injury and apoptosis.It strongly inhibited excessive autophagy by blocking the opening of the mPTP.Cotreatment with ICA and an mPTP inhibitor(cyclosporin A)did not ameliorate mitochondrial dysfunction.However,the protective effects were attenuated by cotreatment with ICA and an mPTP activator(lonidamine).Conclusion ICA inhibits the activation of excessive autophagy and thus improves mitochondrial dysfunction by blocking the mPTP opening.展开更多
Silver nanoplates as novel optical sensors for Cu^2+ detection have been demonstrated.Silver nanoplates are synthesized via previous H_2O_2-NaBH_4 cyclic oxidation-reduction reactions.With introduction of ascorbate a...Silver nanoplates as novel optical sensors for Cu^2+ detection have been demonstrated.Silver nanoplates are synthesized via previous H_2O_2-NaBH_4 cyclic oxidation-reduction reactions.With introduction of ascorbate as mild reductants,Cu^2+ ions are reduced into Cu~+ and the Cu^+ is further reduced to Cu,which is deposited on the surface of the silver nanoplates.The deposition of the Cu on the surface of the silver nanoplates allows a significant red-shift of their plasmon absorption.Therefore,trace Cu^2+ can be detected.The shift of the plasmon absorption wavelength of silver nanoplates is proportional to the Cu^2+concentration over a range of 40-340 μmol L^(-1) with a limit of detection of 9.0 μmol L^(-1).Moreover,such silver nanoplate-based optical sensors provide good selectivity for Cu^2+ detection,and most other metal ions do not disturb its detection.Moreover,the practicality of the proposed sensor was tested.This Cu^2+assay is advantageous in its simplicity,selectivity,and cost-effectiveness.展开更多
基金supported by the Natural Science Foundation of Yichang City of China(No.A23-1-075).
文摘Objective Icariin(ICA)has a good neuroprotective effect and can upregulate neuronal basal autophagy in naturally aging rats.Mitochondrial dysfunction is associated with brain aging-related neurodegenerative diseases.Abnormal opening of the mitochondrial permeability transition pore(mPTP)is a crucial factor in mitochondrial dysfunction and is associated with excessive autophagy.This study aimed to explore that ICA protects against neuronal injury by blocking the mPTP opening and down-regulating autophagy levels in a D-galactose(D-gal)-induced cell injury model.Methods A cell model of neuronal injury was established in rat pheochromocytoma cells(PC12 cells)treated with 200 mmol/L D-gal for 48 h.In this cell model,PC12 cells were pre-treated with different concentrations of ICA for 24 h.MTT was used to detect cell viability.Senescence associatedβ-galactosidase(SA-β-Gal)staining was used to observe cell senescence.Western blot analysis was performed to detect the expression levels of a senescence-related protein(p21),autophagy markers(LC3B,p62,Atg7,Atg5 and Beclin 1),mitochondrial fission and fusion-related proteins(Drp1,Mfn2 and Opa1),and mitophagy markers(Pink1 and Parkin).The changes of autophagic flow were detected by using mRFP-GFP-LC3 adenovirus.The intracellular ultrastructure was observed by transmission electron microscopy.Immunofluorescence was used to detect mPTP,mitochondrial membrane potential(MMP),mitochondrial reactive oxygen species(mtROS)and ROS levels.ROS and apoptosis levels were detected by flow cytometry.Results D-gal treatment significantly decreased the viability of PC12 cells,and markedly increased the SA-β-Gal positive cells as compared to the control group.With the D-gal stimulation,the expression of p21 was significantly up-regulated.Furthermore,D-gal stimulation resulted in an elevated LC3B II/I ratio and decreased p62 expression.Meanwhile,autophagosomes and autolysosomes were significantly increased,indicating abnormal activation of autophagy levels.In addition,in this D-gal-induced model of cell injury,the mPTP was abnormally open,the ROS generation was continuously increased,the MMP was gradually decreased,and the apoptosis was increased.ICA effectively improved mitochondrial dysfunction to protect against D-gal-induced cell injury and apoptosis.It strongly inhibited excessive autophagy by blocking the opening of the mPTP.Cotreatment with ICA and an mPTP inhibitor(cyclosporin A)did not ameliorate mitochondrial dysfunction.However,the protective effects were attenuated by cotreatment with ICA and an mPTP activator(lonidamine).Conclusion ICA inhibits the activation of excessive autophagy and thus improves mitochondrial dysfunction by blocking the mPTP opening.
基金supported by the National Natural Science Foundation of China(No.21375036)the Open Project Program of Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education(Hunan University of Science and Technology,No.E21201)
文摘Silver nanoplates as novel optical sensors for Cu^2+ detection have been demonstrated.Silver nanoplates are synthesized via previous H_2O_2-NaBH_4 cyclic oxidation-reduction reactions.With introduction of ascorbate as mild reductants,Cu^2+ ions are reduced into Cu~+ and the Cu^+ is further reduced to Cu,which is deposited on the surface of the silver nanoplates.The deposition of the Cu on the surface of the silver nanoplates allows a significant red-shift of their plasmon absorption.Therefore,trace Cu^2+ can be detected.The shift of the plasmon absorption wavelength of silver nanoplates is proportional to the Cu^2+concentration over a range of 40-340 μmol L^(-1) with a limit of detection of 9.0 μmol L^(-1).Moreover,such silver nanoplate-based optical sensors provide good selectivity for Cu^2+ detection,and most other metal ions do not disturb its detection.Moreover,the practicality of the proposed sensor was tested.This Cu^2+assay is advantageous in its simplicity,selectivity,and cost-effectiveness.