To shorten the fabrication process of difficult-to-form TiAl sheets, twin-roll strip casting and microstructural control were investigated in Ti-43Al alloy. A crack-free sheet with dimensions of 1000 mm × 110 mm ...To shorten the fabrication process of difficult-to-form TiAl sheets, twin-roll strip casting and microstructural control were investigated in Ti-43Al alloy. A crack-free sheet with dimensions of 1000 mm × 110 mm × 2 mm was obtained. The microstructure of stip casting sheets and heat treatments was systematically studied. The macrostructure consisted of columnar crystals extending inward and centrally located equiaxed crystals with severe Al segregation were observed along the thickness direction, due to the symmetrical solidification process and decreasing cooling rates. The strip casting alloy was characterized by fine duplex microstructure with a grain spacing of 20-30 μm and a lamellar spacing of 10-20 nm. Furthermore, multiple microstructures of near gamma, nearly lamellar and fully lamellar were obtained through heat treatment process with significantly improved homogeneity of the microstructure.展开更多
A simple theoretical model was developed to predict equilibrium between precipitate and matrix in a multicomponent microalloyed steel.The solute concentration in the matrix,the composition and the volume fraction of t...A simple theoretical model was developed to predict equilibrium between precipitate and matrix in a multicomponent microalloyed steel.The solute concentration in the matrix,the composition and the volume fraction of the precipitated second phases,and the reduction in critical precipitation temperature of AlN induced by carbonitride were quantified by the proposed thermodynamic model.The results predicted by the developed model and those by other approaches are in a good agreement.The main advantages of this model over the existing models are that the process of formulation derivation is simple and the model can be easily solved by a personal program.展开更多
A kinetic model based on the classical nucleation and growth theory has been proposed to predict the precipitation behavior of complex precipitate. The method for calculating absolute solution temperature, which is an...A kinetic model based on the classical nucleation and growth theory has been proposed to predict the precipitation behavior of complex precipitate. The method for calculating absolute solution temperature, which is an important guidance for determining solution treatment temperature, is also proposed based on thermodynamic model. In the model, nucleation of the second phase is assumed to be controlled by the effective diffusion, which involves the bulk diffusion and dislocation pipe diffusion, and growth is controlled by the bulk diffusion of forming elements. The interfacial energy of complex precipitate is calculated by the linear interpolation method, and the effects of alloying elements on precipitation behavior are manifested using weighted means of their diffusivities and concentration. The predictions were compared with the experimental measurements, and a good agreement was obtained.展开更多
Hot deformation behavior, microstructural evolution and flow softening mechanism were investigated in Ti-46A1-8Nb alloy via isothermal compression approach. The true stress-strain curves exhibited typical work hardeni...Hot deformation behavior, microstructural evolution and flow softening mechanism were investigated in Ti-46A1-8Nb alloy via isothermal compression approach. The true stress-strain curves exhibited typical work hardening and flow softening, in which the dependence of the peak stress on temperature and strain rate was obtained by hyperbolic sine equation with Zener-Hollomon (Z) parameter, and the activation energy was calculated to be 446.9 kJ/mol. The microstructural analysis shows that the alternate dark and light deformed ribbons of Al-rich and Nb-rich regions appeared and were associated with local flow involving solute segregation. The Al segregation promoted flow softening mainly arising from the recrystaUization of V phase with low stacking fault energy. The coarse recrystallized 7 and several massive phase were observed at grain boundaries. While in the case of Nb segregation, t/B2 phase harmonized bending of lamellae, combined with the growth of recrystallized γ grains and α + β + γ→α+ γ transition under conditions of temperature and stress, leading to the breakdown of α2/γ lamellar colony. During the hot compression process, gliding and dissociation of dislocations occurred in γ phase that acted as the main softening mechanism, leading to extensive γ twins and cross twins in α/γ lamellae and at grain boundaries. In general, homogeneous microstructure during the hot defor- mation process can be obtained in TiAl alloy with high Nb addition and low Al segregation. The deformation substructures intrinsically promote the formability of Ti--46Al-8Nb alloy.展开更多
基金Project(51504060) supported by the National Natural Science Foundation of ChinaProjects(2016YFB0301201,2016YFB0300603) supported by the National Key Research and Development Program of ChinaProject(N160713001) supported by the Fundamental Research Funds for the Central Universities,China
文摘To shorten the fabrication process of difficult-to-form TiAl sheets, twin-roll strip casting and microstructural control were investigated in Ti-43Al alloy. A crack-free sheet with dimensions of 1000 mm × 110 mm × 2 mm was obtained. The microstructure of stip casting sheets and heat treatments was systematically studied. The macrostructure consisted of columnar crystals extending inward and centrally located equiaxed crystals with severe Al segregation were observed along the thickness direction, due to the symmetrical solidification process and decreasing cooling rates. The strip casting alloy was characterized by fine duplex microstructure with a grain spacing of 20-30 μm and a lamellar spacing of 10-20 nm. Furthermore, multiple microstructures of near gamma, nearly lamellar and fully lamellar were obtained through heat treatment process with significantly improved homogeneity of the microstructure.
基金National Key R&D Program of China under Grant No.2017YFB0305300National Natural Science Foundation of China under Grant No. 51234002.
文摘A simple theoretical model was developed to predict equilibrium between precipitate and matrix in a multicomponent microalloyed steel.The solute concentration in the matrix,the composition and the volume fraction of the precipitated second phases,and the reduction in critical precipitation temperature of AlN induced by carbonitride were quantified by the proposed thermodynamic model.The results predicted by the developed model and those by other approaches are in a good agreement.The main advantages of this model over the existing models are that the process of formulation derivation is simple and the model can be easily solved by a personal program.
基金This work was financially supported by the National Natural Science Foundation of China (51234002).
文摘A kinetic model based on the classical nucleation and growth theory has been proposed to predict the precipitation behavior of complex precipitate. The method for calculating absolute solution temperature, which is an important guidance for determining solution treatment temperature, is also proposed based on thermodynamic model. In the model, nucleation of the second phase is assumed to be controlled by the effective diffusion, which involves the bulk diffusion and dislocation pipe diffusion, and growth is controlled by the bulk diffusion of forming elements. The interfacial energy of complex precipitate is calculated by the linear interpolation method, and the effects of alloying elements on precipitation behavior are manifested using weighted means of their diffusivities and concentration. The predictions were compared with the experimental measurements, and a good agreement was obtained.
基金supported by the National Key Research and Development Program of China(No.2016YFB0301201)the National Natural Science Foundation of China(Nos.51504060,51301140)the Fundamental Research Funds for the Central Universities(No.N160713001)
文摘Hot deformation behavior, microstructural evolution and flow softening mechanism were investigated in Ti-46A1-8Nb alloy via isothermal compression approach. The true stress-strain curves exhibited typical work hardening and flow softening, in which the dependence of the peak stress on temperature and strain rate was obtained by hyperbolic sine equation with Zener-Hollomon (Z) parameter, and the activation energy was calculated to be 446.9 kJ/mol. The microstructural analysis shows that the alternate dark and light deformed ribbons of Al-rich and Nb-rich regions appeared and were associated with local flow involving solute segregation. The Al segregation promoted flow softening mainly arising from the recrystaUization of V phase with low stacking fault energy. The coarse recrystallized 7 and several massive phase were observed at grain boundaries. While in the case of Nb segregation, t/B2 phase harmonized bending of lamellae, combined with the growth of recrystallized γ grains and α + β + γ→α+ γ transition under conditions of temperature and stress, leading to the breakdown of α2/γ lamellar colony. During the hot compression process, gliding and dissociation of dislocations occurred in γ phase that acted as the main softening mechanism, leading to extensive γ twins and cross twins in α/γ lamellae and at grain boundaries. In general, homogeneous microstructure during the hot defor- mation process can be obtained in TiAl alloy with high Nb addition and low Al segregation. The deformation substructures intrinsically promote the formability of Ti--46Al-8Nb alloy.