This paper aims at studying optimality conditions of robust weak efficient solutions for a nonsmooth uncertain multi-objective fractional programming problem(NUMFP).The concepts of two types of generalized convex func...This paper aims at studying optimality conditions of robust weak efficient solutions for a nonsmooth uncertain multi-objective fractional programming problem(NUMFP).The concepts of two types of generalized convex function pairs,called type-I functions and pseudo-quasi-type-I functions,are introduced in this paper for(NUMFP).Under the assumption that(NUMFP)satisfies the robust constraint qualification with respect to Clarke subdifferential,necessary optimality conditions of the robust weak efficient solution are given.Sufficient optimality conditions are obtained under pseudo-quasi-type-I generalized convexity assumption.Furthermore,we introduce the concept of robust weak saddle points to(NUMFP),and prove two theorems about robust weak saddle points.The main results in the present paper are verified by concrete examples.展开更多
This paper deals with higher-order optimality conditions and duality theory for approximate solutions in vector optimization involving non-convex set-valued maps.Firstly,under the assumption of near cone-subconvexlike...This paper deals with higher-order optimality conditions and duality theory for approximate solutions in vector optimization involving non-convex set-valued maps.Firstly,under the assumption of near cone-subconvexlikeness for set-valued maps,the higher necessary and sufficient optimality conditions in terms of Studniarski derivatives are derived for local weak approximate minimizers of a set-valued optimization problem.Then,applications to Mond-Weir type dual problem are presented.展开更多
基金supported by Natural Science Foundation of China(Nos.11861002 and 12171601)the Key Project of North Minzu University(No.ZDZX201804)+1 种基金the Construction Project of First-Class Disciplines in Ningxia Higher Education(NXYLXK2017B09)the Postgraduate Innovation Project of North Minzu Universit(No.YCX21157)..
文摘This paper aims at studying optimality conditions of robust weak efficient solutions for a nonsmooth uncertain multi-objective fractional programming problem(NUMFP).The concepts of two types of generalized convex function pairs,called type-I functions and pseudo-quasi-type-I functions,are introduced in this paper for(NUMFP).Under the assumption that(NUMFP)satisfies the robust constraint qualification with respect to Clarke subdifferential,necessary optimality conditions of the robust weak efficient solution are given.Sufficient optimality conditions are obtained under pseudo-quasi-type-I generalized convexity assumption.Furthermore,we introduce the concept of robust weak saddle points to(NUMFP),and prove two theorems about robust weak saddle points.The main results in the present paper are verified by concrete examples.
基金supported by Natural Science Foundation of China government under Grant No.11861002Natural Science Foundation of Ningxia under Grant No.NZ17112+3 种基金First-Class Disciplines Foundation of Ningxia under Grant No.NXYLXK2017B09The Key Project of North Minzu University under Grant No.ZDZX201804Graduate Innovation Project of North Minzu University No.YCX19122Nonlinear analysis and financial optimization research center of North Minzu University
文摘This paper deals with higher-order optimality conditions and duality theory for approximate solutions in vector optimization involving non-convex set-valued maps.Firstly,under the assumption of near cone-subconvexlikeness for set-valued maps,the higher necessary and sufficient optimality conditions in terms of Studniarski derivatives are derived for local weak approximate minimizers of a set-valued optimization problem.Then,applications to Mond-Weir type dual problem are presented.