期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Energy-Optimal and Delay-Bounded Computation Offloading in Mobile Edge Computing with Heterogeneous Clouds 被引量:24
1
作者 tianchu zhao Sheng Zhou +3 位作者 Linqi Song Zhiyuan Jiang Xueying Guo Zhisheng Niu 《China Communications》 SCIE CSCD 2020年第5期191-210,共20页
By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task off... By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task offloading in multi-user MEC systems with heterogeneous clouds, including edge clouds and remote clouds. Tasks are forwarded from mobile devices to edge clouds via wireless channels, and they can be further forwarded to remote clouds via the Internet. Our objective is to minimize the total energy consumption of multiple mobile devices, subject to bounded-delay requirements of tasks. Based on dynamic programming, we propose an algorithm that minimizes the energy consumption, by jointly allocating bandwidth and computational resources to mobile devices. The algorithm is of pseudo-polynomial complexity. To further reduce the complexity, we propose an approximation algorithm with energy discretization, and its total energy consumption is proved to be within a bounded gap from the optimum. Simulation results show that, nearly 82.7% energy of mobile devices can be saved by task offloading compared with mobile device execution. 展开更多
关键词 mobile edge computing heterogeneous clouds energy saving delay bounds dynamic programming
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部