Under the background of digital transformation,the reform of the higher vocational mathematics curriculum faces urgent challenges and opportunities.This article explores the impact of digital transformation on the ref...Under the background of digital transformation,the reform of the higher vocational mathematics curriculum faces urgent challenges and opportunities.This article explores the impact of digital transformation on the reform of higher vocational mathematics curriculum and emphasizes the importance of improving teaching methods centered on learners.The article proposes specific reform methods and discusses the practical application of digital technology in the reform process.By combining digital technology with specific reform methods,further conducting innovative practice research,and continuously exploring the path of reform,we can effectively improve the quality of higher vocational mathematics classroom teaching and provide strong support for the cultivation of comprehensive qualities and employment abilities.展开更多
Soil remediation is an important part of the restoration process of degraded terrestrial ecosystems.Due to its unique properties,biochar is being used widely as an effective soil modifier in agricultural systems,but r...Soil remediation is an important part of the restoration process of degraded terrestrial ecosystems.Due to its unique properties,biochar is being used widely as an effective soil modifier in agricultural systems,but research is still rare on biochar application in grassland ecosystems,especially in degraded alpine grasslands.In this study,we conducted a plot experiment to investigate the effect of biochar application on soil physicochemical properties and microorganisms at the 0–20 cm soil depth of a degraded alpine grassland in Qinghai-Tibet Plateau,China.The experiment consisted of four corn straw biochar application levels(0%,0.5%,1%and 2%,with the percentage representing the ratio of biochar weight to the dry weight of soil in the surface 20 cm soil layer).When the biochar addition increased from 0%to 2%,total nitrogen,total organic carbon and available phosphorus in the 0–10 cm soil layer increased by 41%,55%and 45%,respectively,in the second year after biochar addition.Meanwhile,soil electrical conductivity decreased,and soil water content increased.Total microbial,fungal and bacterial biomasses in the 0–10 cm soil layer increased from 9.15 to 12.68,0.91 to 1.34,and 3.85 to 4.55μg g^(-1),respectively.The relative biomasses of saprophytic fungi and methanotrophic bacteria decreased,while the relative biomasses of ectomycorrhizal fungi and arbuscular mycorrhizal fungi increased.These results indicate that biochar has a great potential in improving microbial activity and soil fertility in soil remediation of the degraded alpine grassland.展开更多
基金Classroom Revolution Special Project for Teaching Construction and Reform at Jiangsu Vocational College of Electronics and Information(JX-G-2023-04)。
文摘Under the background of digital transformation,the reform of the higher vocational mathematics curriculum faces urgent challenges and opportunities.This article explores the impact of digital transformation on the reform of higher vocational mathematics curriculum and emphasizes the importance of improving teaching methods centered on learners.The article proposes specific reform methods and discusses the practical application of digital technology in the reform process.By combining digital technology with specific reform methods,further conducting innovative practice research,and continuously exploring the path of reform,we can effectively improve the quality of higher vocational mathematics classroom teaching and provide strong support for the cultivation of comprehensive qualities and employment abilities.
基金supported by Beijing Science and Technology Plan,China(No.Z181100009618031)the National Natural Science Foundation of China(No.41771255)+1 种基金the National Key Research and Development Program of China(Nos.2016YFC0501902 and 2018YFF0213405)the Key Science and Technology Project of Qinghai Province,China(No.2018-NK-A2)。
文摘Soil remediation is an important part of the restoration process of degraded terrestrial ecosystems.Due to its unique properties,biochar is being used widely as an effective soil modifier in agricultural systems,but research is still rare on biochar application in grassland ecosystems,especially in degraded alpine grasslands.In this study,we conducted a plot experiment to investigate the effect of biochar application on soil physicochemical properties and microorganisms at the 0–20 cm soil depth of a degraded alpine grassland in Qinghai-Tibet Plateau,China.The experiment consisted of four corn straw biochar application levels(0%,0.5%,1%and 2%,with the percentage representing the ratio of biochar weight to the dry weight of soil in the surface 20 cm soil layer).When the biochar addition increased from 0%to 2%,total nitrogen,total organic carbon and available phosphorus in the 0–10 cm soil layer increased by 41%,55%and 45%,respectively,in the second year after biochar addition.Meanwhile,soil electrical conductivity decreased,and soil water content increased.Total microbial,fungal and bacterial biomasses in the 0–10 cm soil layer increased from 9.15 to 12.68,0.91 to 1.34,and 3.85 to 4.55μg g^(-1),respectively.The relative biomasses of saprophytic fungi and methanotrophic bacteria decreased,while the relative biomasses of ectomycorrhizal fungi and arbuscular mycorrhizal fungi increased.These results indicate that biochar has a great potential in improving microbial activity and soil fertility in soil remediation of the degraded alpine grassland.