期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Variational Neural Network Approach for Glacier Modelling with Nonlinear Rheology
1
作者 tiangang cui Zhongjian Wang Zhiwen Zhang 《Communications in Computational Physics》 SCIE 2023年第9期934-954,共21页
We propose a mesh-free method to solve the full Stokes equation for modeling the glacier dynamics with nonlinear rheology.Inspired by the Deep-Ritz method proposed in[13],we first formulate the solution to the non-New... We propose a mesh-free method to solve the full Stokes equation for modeling the glacier dynamics with nonlinear rheology.Inspired by the Deep-Ritz method proposed in[13],we first formulate the solution to the non-Newtonian Stokes equation as the minimizer of a variational problem with boundary constraints.Then,we approximate its solution space by a deep neural network.The loss function for training the neural network is a relaxed version of the variational form,in which penalty terms are used to present soft constraints due to mixed boundary conditions.Instead of introducing mesh grids or basis functions to evaluate the loss function,our method only requires uniform sampling from the physical domain and boundaries.Furthermore,we introduce a re-normalization technique in the neural network to address the significant variation in the scaling of real-world problems.Finally,we illustrate the performance of our method by several numerical experiments,including a 2D model with the analytical solution,the Arolla glacier model with realistic scaling and a 3D model with periodic boundary conditions.Numerical results show that our proposed method is efficient in solving the non-Newtonian mechanics arising from glacier modeling with nonlinear rheology. 展开更多
关键词 Deep learning method variational problems mesh-free method non-Newtonian mechanics nonlinear rheology glacier modelling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部