The Mathieu beam is a typical nondiffracting beam characterized by its propagation invariance and self-reconstruction.These extraordinary properties have given rise to potentialities for applications such as optical c...The Mathieu beam is a typical nondiffracting beam characterized by its propagation invariance and self-reconstruction.These extraordinary properties have given rise to potentialities for applications such as optical communications,optical trapping,and material processing.However,the experimental generation of Mathieu–Gauss beams possessing high quality and compactness is still challenging.In this work,even and helical Mathieu phase plates with different orders m and ellipticity parameters q are fabricated by femtosecond laser two-photon polymerization.The experimentally generated nondiffracting beams are propagationinvariant in several hundred millimeters,which agree with numerical simulations.This work may promote the miniaturization of the application of nondiffracting beams in micronanooptics.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62125503 and 62261160388)the Key R&D Program of Hubei Province of China(Grant Nos.2020BAB001 and 2021BAA024)+3 种基金the Key R&D Program of Guangdong Province(Grant No.2018B030325002)the Science and Technology Innovation Commission of Shenzhen(Grant No.JCYJ20200109114018750)the Innovation Project of Optics Valley Laboratory(Grant No.OVL2021BG004)the Fundamental Research Funds for the Central Universities(Grant No.2019kfyRCPY037).
文摘The Mathieu beam is a typical nondiffracting beam characterized by its propagation invariance and self-reconstruction.These extraordinary properties have given rise to potentialities for applications such as optical communications,optical trapping,and material processing.However,the experimental generation of Mathieu–Gauss beams possessing high quality and compactness is still challenging.In this work,even and helical Mathieu phase plates with different orders m and ellipticity parameters q are fabricated by femtosecond laser two-photon polymerization.The experimentally generated nondiffracting beams are propagationinvariant in several hundred millimeters,which agree with numerical simulations.This work may promote the miniaturization of the application of nondiffracting beams in micronanooptics.