This study is a continuation of our previous work. In this experiment, transparent tin-doped indium oxide (ITO) fork electrodes with different width and spacing were coated on the glass substrates. The used dust parti...This study is a continuation of our previous work. In this experiment, transparent tin-doped indium oxide (ITO) fork electrodes with different width and spacing were coated on the glass substrates. The used dust particle size was smaller than 180 mesh. The effects of the electrode width, the electrode spacing, voltage, frequency, waveform, and the duty ratio on the dust removal efficiency were studied. The obtained optimum conditions of dust removal were as follows: voltage was 1500 V, frequency was 15 Hz, square wave, 10% duty ratio, the electrode width was 0.5 mm, electrodes spacing was 1.3 mm. Our previous experimental results show that the dust removal efficiency would be up to 95%. But in this experiment, under the optimum conditions, the dust removal efficiency could be up to 99%.展开更多
文摘This study is a continuation of our previous work. In this experiment, transparent tin-doped indium oxide (ITO) fork electrodes with different width and spacing were coated on the glass substrates. The used dust particle size was smaller than 180 mesh. The effects of the electrode width, the electrode spacing, voltage, frequency, waveform, and the duty ratio on the dust removal efficiency were studied. The obtained optimum conditions of dust removal were as follows: voltage was 1500 V, frequency was 15 Hz, square wave, 10% duty ratio, the electrode width was 0.5 mm, electrodes spacing was 1.3 mm. Our previous experimental results show that the dust removal efficiency would be up to 95%. But in this experiment, under the optimum conditions, the dust removal efficiency could be up to 99%.