In this paper, the authors investigate the synchronization of an array of linearly coupled identical dynamical systems with a delayed coupling. Here the coupling matrix can be asymmetric and reducible. Some criteria e...In this paper, the authors investigate the synchronization of an array of linearly coupled identical dynamical systems with a delayed coupling. Here the coupling matrix can be asymmetric and reducible. Some criteria ensuring delay-independent and delay- dependent global synchronization are derived respectively. It is shown that if the coupling delay is less than a positive threshold, then the coupled network will be synchronized. On the other hand, with the increase of coupling delay, the synchronization stability of the network will be restrained, even eventually de-synchronized.展开更多
The aim of this paper is to provide a sys- tematic review on the framework to analyze dynamics in recurrently connected neural networks with discontinu- ous right-hand sides with a focus on the authors' works in the ...The aim of this paper is to provide a sys- tematic review on the framework to analyze dynamics in recurrently connected neural networks with discontinu- ous right-hand sides with a focus on the authors' works in the past three years. The concept of the Filippov so- lution is employed to define the solution of the neural network systems by transforming them to differential in- clusions. The theory of viability provides a tool to study the existence and uniqueness of the solution and the Lya- punov function (functional) approach is used to investi- gate the global stability and synchronization. More pre- cisely, we prove that the diagonal-dominant conditions guarantee the existence, uniqueness, and stability of a general class of integro-differential equations with (al- most) periodic self-inhibitions, interconnection weights, inputs, and delays. This model is rather general and in- cludes the well-known Hopfield neural networks, Cohen- Grossberg neural networks, and cellular neural networks as special cases. We extend the absolute stability anal- ysis of gradient-like neural network model by relaxing the analytic constraints so that they can be employed to solve optimization problem with non-smooth cost func- tions. Furthermore, we study the global synchronization problem of a class of linearly coupled neural network with discontinuous right-hand sides.展开更多
基金Project supported by the National Natural Science Poundation of China(Nos.60574044,60774074)the Graduate Student Innovation Fonndation of Fudan University.
文摘In this paper, the authors investigate the synchronization of an array of linearly coupled identical dynamical systems with a delayed coupling. Here the coupling matrix can be asymmetric and reducible. Some criteria ensuring delay-independent and delay- dependent global synchronization are derived respectively. It is shown that if the coupling delay is less than a positive threshold, then the coupled network will be synchronized. On the other hand, with the increase of coupling delay, the synchronization stability of the network will be restrained, even eventually de-synchronized.
文摘The aim of this paper is to provide a sys- tematic review on the framework to analyze dynamics in recurrently connected neural networks with discontinu- ous right-hand sides with a focus on the authors' works in the past three years. The concept of the Filippov so- lution is employed to define the solution of the neural network systems by transforming them to differential in- clusions. The theory of viability provides a tool to study the existence and uniqueness of the solution and the Lya- punov function (functional) approach is used to investi- gate the global stability and synchronization. More pre- cisely, we prove that the diagonal-dominant conditions guarantee the existence, uniqueness, and stability of a general class of integro-differential equations with (al- most) periodic self-inhibitions, interconnection weights, inputs, and delays. This model is rather general and in- cludes the well-known Hopfield neural networks, Cohen- Grossberg neural networks, and cellular neural networks as special cases. We extend the absolute stability anal- ysis of gradient-like neural network model by relaxing the analytic constraints so that they can be employed to solve optimization problem with non-smooth cost func- tions. Furthermore, we study the global synchronization problem of a class of linearly coupled neural network with discontinuous right-hand sides.