Crowdsourcing allows people who are endowed with certain skills to accomplish special tasks with incentive. Despite the state-of-art crowdsourcing schemes have guaranteed low overhead and considerable quality, most of...Crowdsourcing allows people who are endowed with certain skills to accomplish special tasks with incentive. Despite the state-of-art crowdsourcing schemes have guaranteed low overhead and considerable quality, most of them expose task content and user’s attribute information to a centralized server. These servers are vulnerable to single points of failure, the leakage of user’s privacy information, and lacking of transparency. We therefore explored an alternative design for task assignment based on the emerging decentralized blockchain technology. While enabling the advantages of the public blockchain, changing to open operations requires some additional technology and design to preserve the privacy of user’s information. To mitigate this issue, we proposed a secure task assignment scheme, which enables task content preservation and anonymous attribute requirement checking. Specifically, by adopting the cryptographic techniques, the proposed scheme enables task requester to safely place his task in a transparent blockchain. Furthermore, the proposed scheme divides the attribute verification process into public pre-verification and requester verification, so that the requester can check only the identity of the worker, instead of verifying the attributes one by one, thereby preserving the identity of worker while significantly reducing the requester’s calculation burden. Additionally, security analysis demonstrated unrelated entities cannot learn about the task content and identity information from all data uploaded by requester and worker. Performance evaluation showed the low computational overhead of our scheme.展开更多
文摘Crowdsourcing allows people who are endowed with certain skills to accomplish special tasks with incentive. Despite the state-of-art crowdsourcing schemes have guaranteed low overhead and considerable quality, most of them expose task content and user’s attribute information to a centralized server. These servers are vulnerable to single points of failure, the leakage of user’s privacy information, and lacking of transparency. We therefore explored an alternative design for task assignment based on the emerging decentralized blockchain technology. While enabling the advantages of the public blockchain, changing to open operations requires some additional technology and design to preserve the privacy of user’s information. To mitigate this issue, we proposed a secure task assignment scheme, which enables task content preservation and anonymous attribute requirement checking. Specifically, by adopting the cryptographic techniques, the proposed scheme enables task requester to safely place his task in a transparent blockchain. Furthermore, the proposed scheme divides the attribute verification process into public pre-verification and requester verification, so that the requester can check only the identity of the worker, instead of verifying the attributes one by one, thereby preserving the identity of worker while significantly reducing the requester’s calculation burden. Additionally, security analysis demonstrated unrelated entities cannot learn about the task content and identity information from all data uploaded by requester and worker. Performance evaluation showed the low computational overhead of our scheme.