Flame-retardant composites with high electromagnetic interference(EMI)shielding performance are desirable for electronic device packaging.Despite great potential of MXene for high EMI,it still remains a great challeng...Flame-retardant composites with high electromagnetic interference(EMI)shielding performance are desirable for electronic device packaging.Despite great potential of MXene for high EMI,it still remains a great challenge to develop high-performance flame-retardant polymer/MXene composites with excellent EMI shielding effectiveness because of the poor oxidative stability of MXene.Herein,phosphorylated MXene/polypropylene(PP)composites are prepared by coating phosphorylated MXene on PP fabric followed by spraying polyethylenimine(PEI)and hot-pressing.The phosphorylated MXene proves to be more durable against oxidation than pure MXene due to the protection effect of polyphosphates.Upon hot-pressing,melted PP fibers are fused together at their contact points and thus as-prepared composites are bi-continuous with two interpenetrating phases.The composites show significantly improved thermal stability and flame retardancy relative to pure PP,with a low total heat release(THR)of 3.7 kJ/g and a heat release rate(HRR)of 50.0 W/g,which are reduced by 78%and 87%,respectively.In addition,the composites exhibit a high electrical conductivity of~36,700 S/m and an EMI shielding performance of~90 d B over the whole frequency range of 8–12 GHz with a thickness of~400μm.The as-developed PP/MXene composites hold great promise for reliable protection of next-generation electronic devices working in complex environments.展开更多
基金funding support of the Key Laboratory of Flame Retardancy Finishing of Textile Materials,CNTAC(Q811580421)Australian Research Council(Nos.DP190102992 and FT190100188)the National Natural Science Foundation of China(Nos.51803200 and 52003104)。
文摘Flame-retardant composites with high electromagnetic interference(EMI)shielding performance are desirable for electronic device packaging.Despite great potential of MXene for high EMI,it still remains a great challenge to develop high-performance flame-retardant polymer/MXene composites with excellent EMI shielding effectiveness because of the poor oxidative stability of MXene.Herein,phosphorylated MXene/polypropylene(PP)composites are prepared by coating phosphorylated MXene on PP fabric followed by spraying polyethylenimine(PEI)and hot-pressing.The phosphorylated MXene proves to be more durable against oxidation than pure MXene due to the protection effect of polyphosphates.Upon hot-pressing,melted PP fibers are fused together at their contact points and thus as-prepared composites are bi-continuous with two interpenetrating phases.The composites show significantly improved thermal stability and flame retardancy relative to pure PP,with a low total heat release(THR)of 3.7 kJ/g and a heat release rate(HRR)of 50.0 W/g,which are reduced by 78%and 87%,respectively.In addition,the composites exhibit a high electrical conductivity of~36,700 S/m and an EMI shielding performance of~90 d B over the whole frequency range of 8–12 GHz with a thickness of~400μm.The as-developed PP/MXene composites hold great promise for reliable protection of next-generation electronic devices working in complex environments.