In this paper, we try to find numerical solution of y'(x)= p(x)y(x)+g(x)+λ∫ba K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b or y'(x)= p(x)y(x)+g(x)+λ∫xa K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b by using Local p...In this paper, we try to find numerical solution of y'(x)= p(x)y(x)+g(x)+λ∫ba K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b or y'(x)= p(x)y(x)+g(x)+λ∫xa K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b by using Local polynomial regression (LPR) method. The numerical solution shows that this method is powerful in solving integro-differential equations. The method will be tested on three model problems in order to demonstrate its usefulness and accuracy.展开更多
文摘In this paper, we try to find numerical solution of y'(x)= p(x)y(x)+g(x)+λ∫ba K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b or y'(x)= p(x)y(x)+g(x)+λ∫xa K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b by using Local polynomial regression (LPR) method. The numerical solution shows that this method is powerful in solving integro-differential equations. The method will be tested on three model problems in order to demonstrate its usefulness and accuracy.