Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the ma...Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding.展开更多
Soybean(Glycine max) is an important legume crop that was domesticated in temperate regions.Soybean varieties from these regions generally mature early and exhibit extremely low yield when grown under inductive short-...Soybean(Glycine max) is an important legume crop that was domesticated in temperate regions.Soybean varieties from these regions generally mature early and exhibit extremely low yield when grown under inductive short-day(SD) conditions at low latitudes. The long-juvenile(LJ) trait, which is characterized by delayed flowering and maturity,and improved yield under SD conditions, allowed the cultivation of soybean to expand to lower latitudes. Two major loci control the LJ trait: J and E6. In the current study, positional cloning, sequence analysis, and transgenic complementation confirmed that E6 is a novel allele of J, the ortholog of Arabidopsis thaliana EARLY FLOWERING 3(ELF3). The mutant allele e6^(PG), which carries a Ty1/Copia-like retrotransposon insertion, does not suppress the legume-specific flowering repressor E1, allowing E1 to inhibit Flowering Locus T(FT) expression and thus delaying flowering and increasing yields under SD conditions. The e6^(PG)allele is a rare allele that has not been incorporated into modern breeding programs.The dysfunction of J might have greatly facilitated the adaptation of soybean to low latitudes. Our findings increase our understanding of the molecular mechanisms underlying the LJ trait and provide valuable resources for soybean breeding.展开更多
基金supported by the National Key Research and Development Program of China(2023YFD1200600 to Xiaoya Lin)National Natural Science Foundation of China(32090060 to Fanjiang Kong,32001568 to Xiaoya Lin,31930083 to Baohui Liu,and 31901500 to Tiantian Bu)China Postdoctoral Science Foundation(2019 M652839 to Liyu Chen)。
文摘Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding.
基金supported by the National Natural Science Foundation of China(31725021)funded by the Major Program of Guangdong Basic and Applied Research(2019B030302006)。
文摘Soybean(Glycine max) is an important legume crop that was domesticated in temperate regions.Soybean varieties from these regions generally mature early and exhibit extremely low yield when grown under inductive short-day(SD) conditions at low latitudes. The long-juvenile(LJ) trait, which is characterized by delayed flowering and maturity,and improved yield under SD conditions, allowed the cultivation of soybean to expand to lower latitudes. Two major loci control the LJ trait: J and E6. In the current study, positional cloning, sequence analysis, and transgenic complementation confirmed that E6 is a novel allele of J, the ortholog of Arabidopsis thaliana EARLY FLOWERING 3(ELF3). The mutant allele e6^(PG), which carries a Ty1/Copia-like retrotransposon insertion, does not suppress the legume-specific flowering repressor E1, allowing E1 to inhibit Flowering Locus T(FT) expression and thus delaying flowering and increasing yields under SD conditions. The e6^(PG)allele is a rare allele that has not been incorporated into modern breeding programs.The dysfunction of J might have greatly facilitated the adaptation of soybean to low latitudes. Our findings increase our understanding of the molecular mechanisms underlying the LJ trait and provide valuable resources for soybean breeding.