Parkinson’s disease (PD) is a common neurodegenerative disease with unclear pathogenesis. Currently, there are no disease-modifying neuron-protecting drugs to slow down the neuronal degeneration. Mutations in the leu...Parkinson’s disease (PD) is a common neurodegenerative disease with unclear pathogenesis. Currently, there are no disease-modifying neuron-protecting drugs to slow down the neuronal degeneration. Mutations in the leucine-rich repeat kinase 2 (LRRK2) cause genetic forms of PD and contribute to sporadic PD as well. Disruption of LRRK2 kinase functions has become one of the potential mechanisms underlying disease-linked mutation-induced neuronal degeneration. To further characterize the pharmacological effects of a reported LRRK2 kinase inhibitor, LDN-73794, in vitro cell models and a LRRK2 Drosophila PD model were used. LDN-73794 reduced LRRK2 kinase activity in vitro and in vivo. Moreover, LDN-73794 increased survival, improved locomotor activity, and suppressed DA neuron loss in LRRK2 transgenic flies. These results suggest that inhibition of LRRK2 kinase activity can be a potential therapeutic strategy for PD intervention and LDN-73794 could be a potential lead compound for developing neuroprotective therapeutics.展开更多
Parkinson’s disease (PD) is a progressive neurodegenerative movement disorder resulting from a selective loss of dopaminergic neurons. The pathogenesis of PD remains incompletely understood, but increasing evidence f...Parkinson’s disease (PD) is a progressive neurodegenerative movement disorder resulting from a selective loss of dopaminergic neurons. The pathogenesis of PD remains incompletely understood, but increasing evidence from human and animal studies has suggested that oxidative damage contributes to the neuronal loss in PD. In this study, we used rotenone (a mitochondrial complex I inhibitor) based cell and Drosophila models that resemble some key pathological features of PD to test whether curcumin, a potent antioxidant compound, derived from the curry spice turmeric, could protect against rotenone-induced neuronal toxicity. We found that curcumin reduced rotenone induced cell death in SH-SY5Y human neuroblastoma cells and alleviated PD-like symptoms in drosophila via reducing the intracellular and mitochondrial reactive oxygen species (ROS) levels and inhibiting the caspase-3/caspase-9 activity. These results suggest that curcumin is a promising therapeutic compound for PD.展开更多
文摘Parkinson’s disease (PD) is a common neurodegenerative disease with unclear pathogenesis. Currently, there are no disease-modifying neuron-protecting drugs to slow down the neuronal degeneration. Mutations in the leucine-rich repeat kinase 2 (LRRK2) cause genetic forms of PD and contribute to sporadic PD as well. Disruption of LRRK2 kinase functions has become one of the potential mechanisms underlying disease-linked mutation-induced neuronal degeneration. To further characterize the pharmacological effects of a reported LRRK2 kinase inhibitor, LDN-73794, in vitro cell models and a LRRK2 Drosophila PD model were used. LDN-73794 reduced LRRK2 kinase activity in vitro and in vivo. Moreover, LDN-73794 increased survival, improved locomotor activity, and suppressed DA neuron loss in LRRK2 transgenic flies. These results suggest that inhibition of LRRK2 kinase activity can be a potential therapeutic strategy for PD intervention and LDN-73794 could be a potential lead compound for developing neuroprotective therapeutics.
文摘Parkinson’s disease (PD) is a progressive neurodegenerative movement disorder resulting from a selective loss of dopaminergic neurons. The pathogenesis of PD remains incompletely understood, but increasing evidence from human and animal studies has suggested that oxidative damage contributes to the neuronal loss in PD. In this study, we used rotenone (a mitochondrial complex I inhibitor) based cell and Drosophila models that resemble some key pathological features of PD to test whether curcumin, a potent antioxidant compound, derived from the curry spice turmeric, could protect against rotenone-induced neuronal toxicity. We found that curcumin reduced rotenone induced cell death in SH-SY5Y human neuroblastoma cells and alleviated PD-like symptoms in drosophila via reducing the intracellular and mitochondrial reactive oxygen species (ROS) levels and inhibiting the caspase-3/caspase-9 activity. These results suggest that curcumin is a promising therapeutic compound for PD.