期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
3D-Printed Scaffolds Promote Angiogenesis by Recruiting Antigen-Specific T Cells
1
作者 Cuidi Li Zhenjiang Ma +7 位作者 Wentao Li tianyang jie Liping Zhong Hongfang Chen Wenhao Wang Jinwu Wang Wenguo Cui Yongxiang Zhao 《Engineering》 SCIE EI CAS 2022年第10期183-195,共13页
The immune response after implantation is a primary determinant of the tissue-repair effects of threedimensional(3D)-printed scaffolds.Thus,scaffolds that can subtly regulate immune responses may display extraordinary... The immune response after implantation is a primary determinant of the tissue-repair effects of threedimensional(3D)-printed scaffolds.Thus,scaffolds that can subtly regulate immune responses may display extraordinary functions.Inspired by the angiogenesis promotion effect of humoral immune response,we covalently combined mesoporous silica micro rod(MSR)/polyethyleneimine(PEI)/ovalbumin(OVA)self-assembled vaccines with 3D-printed calcium phosphate cement(CPC)scaffolds for local antigen-specific immune response activation.With the response activated,antigen-specific CD4+T helper2(Th2)cells can be recruited to promote early angiogenesis.The silicon(Si)ions from MSRs can accelerate osteogenesis,with an adequate blood supply being provided.At room temperature,scaffolds with uniformly interconnected macropores were printed using a self-setting CPC-based printing paste,which promoted the uniform dispersion and structural preservation of functional polysaccharides oxidized hyaluronic acid(OHA)inside.Sustained release of OVA was achieved with MSR/PEI covalently attached to scaffolds rich in aldehyde groups as the vaccine carrier.The vaccine-loaded scaffolds effectively recruited and activated dendritic cells(DCs)for antigen presentation and promoted the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)in vitro.When embedded subcutaneously in vivo,the vaccine-loaded scaffolds increased the proportion of Th2 cells in the spleen and locally recruited antigenspecific T cells to promote angiogenesis in and around the scaffold.Furthermore,the result in a rat skull defect-repair model indicated that the antigen-specific vaccine-loaded scaffolds promoted the regeneration of vascularized bone.This method may provide a novel concept for patient-specific implant design for angiogenesis promotion. 展开更多
关键词 3D printing Immune microenvironment regulating ANGIOGENESIS Bone regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部