As the elderly population continues to grow, the number of patients with low back pain is gradually increasing. Among them, Lumbar Degenerative Diseases (LDD) is one of the major contributors to low back pain. Biomech...As the elderly population continues to grow, the number of patients with low back pain is gradually increasing. Among them, Lumbar Degenerative Diseases (LDD) is one of the major contributors to low back pain. Biomechanical in vivo studies of the lumbar spine are mainly performed by implants or imaging data to record the real-time changes of form and stress on the intervertebral disc during motion. However, the current developments are slow due to the technological and ethical limitations. In vitro experiments include animal experiments and cadaver experiments, which are difficult to operate or differ greatly from normal human structures, and the results still need to be verified repeatedly to test their accuracy. As for finite element method, it is relatively low cost and can repeat the experimental results. Therefore, we believe that finite element analysis plays an extremely important role in biomechanical research, especially in analyzing the relationship between different surgical models and the degeneration caused by different mechanics.展开更多
This work compares the threshold applied to the swirling strength as well as the vortex orientation statistics in the total and fluctuating velocity fields using direct numerical simulations of compressible and incomp...This work compares the threshold applied to the swirling strength as well as the vortex orientation statistics in the total and fluctuating velocity fields using direct numerical simulations of compressible and incompressible turbulent channel flows.It is concluded that the difference in the swirling strength for vortex identification is minimal in the logarithmic region such that these two situations share the same threshold.Regarding the vortex orientation,the inclination angle remains similar.However,as the wall-normal distance increases,a more and more obvious distinction is noticed for its orientation with respect to the spanwise(z)direction.It is mainly due to their intrinsic differences and attendant contrasting preference for the vortex identification,i.e.,vortices rotating in the−z direction for the total velocity field and in the z direction for the fluctuating one.These observations function as a reasonable explanation for various remarks in previous studies.展开更多
文摘As the elderly population continues to grow, the number of patients with low back pain is gradually increasing. Among them, Lumbar Degenerative Diseases (LDD) is one of the major contributors to low back pain. Biomechanical in vivo studies of the lumbar spine are mainly performed by implants or imaging data to record the real-time changes of form and stress on the intervertebral disc during motion. However, the current developments are slow due to the technological and ethical limitations. In vitro experiments include animal experiments and cadaver experiments, which are difficult to operate or differ greatly from normal human structures, and the results still need to be verified repeatedly to test their accuracy. As for finite element method, it is relatively low cost and can repeat the experimental results. Therefore, we believe that finite element analysis plays an extremely important role in biomechanical research, especially in analyzing the relationship between different surgical models and the degeneration caused by different mechanics.
基金fund from the Research Grants Coun-cil(RGC)of the Government of Hong Kong Special Administra-tive Region(HKSAR)with RGC/ECS Project(No.26200222)the fund from Guangdong Basic and Applied Basic Research Foundation(No.2022A1515011779)the fund from the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooper-ation Zone(No.HZQB-KCZYB-2020083)。
文摘This work compares the threshold applied to the swirling strength as well as the vortex orientation statistics in the total and fluctuating velocity fields using direct numerical simulations of compressible and incompressible turbulent channel flows.It is concluded that the difference in the swirling strength for vortex identification is minimal in the logarithmic region such that these two situations share the same threshold.Regarding the vortex orientation,the inclination angle remains similar.However,as the wall-normal distance increases,a more and more obvious distinction is noticed for its orientation with respect to the spanwise(z)direction.It is mainly due to their intrinsic differences and attendant contrasting preference for the vortex identification,i.e.,vortices rotating in the−z direction for the total velocity field and in the z direction for the fluctuating one.These observations function as a reasonable explanation for various remarks in previous studies.