期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Size effects in the uniaxial compressive properties of 3D printed models of rocks:an experimental investigation
1
作者 Hao Wu Yang Ju +4 位作者 Xin han Zhangyu Ren Yue Sun Yanlong Zhang tianyi han 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第6期1-12,共12页
Transparent physical models of real rocks fabricated using three-dimensional(3D)printing technology are used in photoelas-tic experiments to quantify the evolution of the internal stress and deformation fields of rock... Transparent physical models of real rocks fabricated using three-dimensional(3D)printing technology are used in photoelas-tic experiments to quantify the evolution of the internal stress and deformation fields of rocks.Therefore,they are rendered as an emerging powerful technique to quantitatively reveal the intrinsic mechanisms of rock failure.The mechanical behav-ior of natural rocks exhibits a significant size effect;however,limited research has been conducted on whether transparent physical models observe similar size effects.In this study,to make the transparent printed models accurately demonstrate the mechanical behavior of natural rocks and reveal the internal mechanism of the size effect in rock mechanical behavior,the size effect in 3D printed models of fractured and porous rocks under uniaxial compressive loading was investigated.Transparent cylindrical models with different sizes that contained different fractured and porous structures were printed using the fracture and porous characteristics extracted from natural coal and sandstone.The variation in uniaxial compres-sive strength and elastic modulus of fractured and porous models for increasing model sizes were obtained through uniaxial compression experiments.Finally,the influence of internal discontinuous structural features,such as fractures and pores,on the size effect pertaining to the mechanical behavior of the model was analyzed and elaborated by comparing it with the mechanical properties of the continuous homogeneous model without fractures and pores.The findings provided support and reference to analyze the size effect of rock mechanical behavior and the effect of the internal discontinuous structure using 3D printed transparent models. 展开更多
关键词 Size effect 3D printed model ROCKS Mechanical property FRACTURES Pores
下载PDF
Refined microstructure and enhanced mechanical properties of AlCrFe_(2)Ni_(2) medium entropy alloy produced via laser remelting 被引量:7
2
作者 tianyi han Yong Liu +4 位作者 Mingqing Liao Danni Yang Nan Qu Zhonghong Lai Jingchuan Zhu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第4期18-27,共10页
A Co-free as-cast AlCrAlCrFe_(2)Ni_(2)medium entropy alloy(MEA)with multi-phases was remelted by fiber laser in this study.The effect of laser remelting on the microstructure,phase distribution and mechanical properti... A Co-free as-cast AlCrAlCrFe_(2)Ni_(2)medium entropy alloy(MEA)with multi-phases was remelted by fiber laser in this study.The effect of laser remelting on the microstructure,phase distribution and mechanical properties was investigated by characterizing the as-cast and the remelted AlCrAlCrFe_(2)Ni_(2)alloy.The laser remelting process resulted in a significant decrease of grain size from about 780μm to 58.89μm(longitudinal section)and 15.87μm(transverse section)and an increase of hardness from 4.72±0.293 GPa to 6.40±0.147 GPa(longitudinal section)and 7.55±0.360 GPa(transverse section).It was also found that the long side plate-like microstructure composed of FCC phase,ordered B2 phase and disordered BCC phase in the as-cast alloy was transformed into nano-size weave-like microstructure consisting of alternating ordered B2 and disordered BCC phases.The mechanical properties were evaluated by the derived stressstrain relationship obtained from nano-indentation tests data.The results showed that the yield stress increased from 661.9 MPa to 1347.6 MPa(longitudinal section)and 1647.2 MPa(transverse section)after remelting.The individual contribution of four potential strengthening mechanisms to the yield strength of the remelted alloy was quantitatively evaluated,including grain boundary strengthening,dislocation strengthening,solid solution strengthening and precipitation strengthening.The calculation results indicated that dislocation and precipitation are dominant strengthening mechanisms in the laser remelted MEA. 展开更多
关键词 Medium entropy alloy Laser remelting MICROSTRUCTURE Nano-indentation Strengthening mechanism
原文传递
Unlocking the secrets behind liquid superlubricity:A state-ofthe-art review on phenomena and mechanisms 被引量:5
3
作者 tianyi han Shuowen ZhanG Chenhui ZhanG 《Friction》 SCIE EI CAS CSCD 2022年第8期1137-1165,共29页
Superlubricity,the state of ultralow friction between two sliding surfaces,has become a frontier subject in tribology.Here,a state-of-the-art review of the phenomena and mechanisms of liquid superlubricity are present... Superlubricity,the state of ultralow friction between two sliding surfaces,has become a frontier subject in tribology.Here,a state-of-the-art review of the phenomena and mechanisms of liquid superlubricity are presented based on our ten-year research,to unlock the secrets behind liquid superlubricity,a major approach to achieve superlubricity.An overview of the discovery of liquid superlubricity materials is presented from five different categories,including water and acid-based solutions,hydrated materials,ionic liquids(ILs),two-dimensional(2D)materials as lubricant additives,and oil-based lubricants,to show the hydrodynamic and hydration contributions to liquid superlubricity.The review also discusses four methods to further expand superlubricity by solving the challenge of lubricants that have a high load-carrying capacity with a low shear resistance,including enhancing the hydration contribution by strengthening the hydration strength of lubricants,designing friction surfaces with higher negative surface charge densities,simultaneously combining hydration and hydrodynamic contribution,and using 2D materials(e.g.,graphene and black phosphorus)to separate the contact of asperities.Furthermore,uniform mechanisms of liquid superlubricity have been summarized for different liquid lubricants at the boundary,mixed,and hydrodynamic lubrication regimes.To the best of our knowledge,almost all the immense progresses of the exciting topic,superlubricity,since the first theoretical prediction in the early 1990s,focus on uniform superlubricity mechanisms.This review aims to guide the research direction of liquid superlubricity in the future and to further expand liquid superlubricity,whether in a theoretical research or engineering applications,ultimately enabling a sustainable state of ultra-low friction and ultra-low wear as well as transformative improvements in the efficiency of mechanical systems and human bodies. 展开更多
关键词 liquid superlubricity hydrodynamic lubrication hydration lubrication surface potential surface forces
原文传递
Radio-frequency measurement in semiconductor quantum computation 被引量:2
4
作者 tianyi han MingBo Chen +3 位作者 Gang Cao HaiOu Li Ming Xiao GuoPing Guo 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2017年第5期36-48,共13页
Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In... Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models. 展开更多
关键词 quantum dot radio-frequency reflectometry RF-QPC RF-DGS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部