Umbilical cord blood (UCB) is a current major source of hematopoietic stem cells (HSCs) for cell transplantation therapy. Cell transplantation with HSCs derived from UCB is advantageous over transplantation with HSCs ...Umbilical cord blood (UCB) is a current major source of hematopoietic stem cells (HSCs) for cell transplantation therapy. Cell transplantation with HSCs derived from UCB is advantageous over transplantation with HSCs from adult tissues. However, the low number of HSC derived from a single unit of UCB limits its application. Thus,<i> ex vivo</i> expansion is a good option to create more UCB HSCs for clinical application. The strategies for HSC expansion <i>in vitro</i> focus on mimicking the composition and structure of HSC natural niche by enhancing self-renewal and inhibiting lineage differentiation of HSCs. In the past decade, the mechanisms of the interaction between HSC and the natural niche have been deeply investigated. This great progress in basic research has led to advancements in UCB HSC<i> ex vivo</i> expansion. In addition, the biological characteristics of the originally isolated UCB HSCs correlate with outcome of subsequent<i> ex vivo</i> expansion. In this paper, we summarize the late progress achieved in isolation and<i> ex vivo</i> expansion of UCB HSCs. Importantly, we attempt to provide an impact and practicable procedure to expand UCB HSC <i>in vitro</i> from isolation of original HSCs to identification of expanded HSCs.展开更多
文摘Umbilical cord blood (UCB) is a current major source of hematopoietic stem cells (HSCs) for cell transplantation therapy. Cell transplantation with HSCs derived from UCB is advantageous over transplantation with HSCs from adult tissues. However, the low number of HSC derived from a single unit of UCB limits its application. Thus,<i> ex vivo</i> expansion is a good option to create more UCB HSCs for clinical application. The strategies for HSC expansion <i>in vitro</i> focus on mimicking the composition and structure of HSC natural niche by enhancing self-renewal and inhibiting lineage differentiation of HSCs. In the past decade, the mechanisms of the interaction between HSC and the natural niche have been deeply investigated. This great progress in basic research has led to advancements in UCB HSC<i> ex vivo</i> expansion. In addition, the biological characteristics of the originally isolated UCB HSCs correlate with outcome of subsequent<i> ex vivo</i> expansion. In this paper, we summarize the late progress achieved in isolation and<i> ex vivo</i> expansion of UCB HSCs. Importantly, we attempt to provide an impact and practicable procedure to expand UCB HSC <i>in vitro</i> from isolation of original HSCs to identification of expanded HSCs.