The c-axis oriented hcp-Co_(81)Ir_(19)magnetic films were prepared on different seed layers(Ni,Cu,Ir,Pt,Au,and No seed).We systematically investigated the impact that surface-free energy and strain energy have on the ...The c-axis oriented hcp-Co_(81)Ir_(19)magnetic films were prepared on different seed layers(Ni,Cu,Ir,Pt,Au,and No seed).We systematically investigated the impact that surface-free energy and strain energy have on the orientation and defects and/or internal stress of the grains by increasing the lattice mismatch ratio.Moreover,the initial permeability and the natural resonance frequency were discussed in great detail using a comparison between calculated values and experimental values.We found that the almost unchanged 4πM_(s) andμ_(i) are not affected,while the changed H_(c),intrinsic K_(grain),and f_(r) are strongly dependent on the seed layer and seed layer material.Moreover,the extracted damping constant is sensitive to the defects and/or internal stress and orientation of the grains.Therefore,the soft magnetic properties and microwave properties are adjusted and optimized by seed layers with different materials.展开更多
The oriented(CoIr)_(100-x)P_x(P = B, Ni, and SiO_2) soft magnetic films are prepared. Their morphology is measured using transmission electron microscopy(TEM), and reveals that these films exhibit good crystallinity a...The oriented(CoIr)_(100-x)P_x(P = B, Ni, and SiO_2) soft magnetic films are prepared. Their morphology is measured using transmission electron microscopy(TEM), and reveals that these films exhibit good crystallinity and high degree of the c-axis orientation. The magnetic properties are thoroughly investigated as a function of doping x. Our results show that all of these films possess negative magnetocrystalline anisotropy as required by possible applications. Both the intrinsic and extrinsic contributions are considered to interpret the broadening of the ferromagnetic resonance spectral linewidth. The intrinsic Gilbert damping is identified as the main cause of the linewidth broadening, while the extrinsic part originating from inhomogeneities only plays a minor role. More interestingly, our results show that the damping constant can be controlled by using the doping method.展开更多
We present detailed investigations of structural and static/dynamic magnetic properties of hydrogenated hcp-Co_(80)^(57)Fe_(4)Ir_(16) soft magnetic thin films.Two different kinds of defects,i.e.,destructive and non-de...We present detailed investigations of structural and static/dynamic magnetic properties of hydrogenated hcp-Co_(80)^(57)Fe_(4)Ir_(16) soft magnetic thin films.Two different kinds of defects,i.e.,destructive and non-destructive,were demonstrated by controlling the negative bias voltage of the hydrogenation process.Our results show that the structure and magnetic properties of our sample can be tuned by the density of the induced defects.These results provide better understanding of the hydrogenation effect and thus can be used in the future for materials processing to meet the requirements of different devices.展开更多
基金Project supported by the Natural Science Foundation of Ningxia in China (Grant No.2022AAC03288)the Ningxia New Solid Electronic Materials and Devices Research and Development Innovation Team (Grant No.2020CXTDLX12)。
文摘The c-axis oriented hcp-Co_(81)Ir_(19)magnetic films were prepared on different seed layers(Ni,Cu,Ir,Pt,Au,and No seed).We systematically investigated the impact that surface-free energy and strain energy have on the orientation and defects and/or internal stress of the grains by increasing the lattice mismatch ratio.Moreover,the initial permeability and the natural resonance frequency were discussed in great detail using a comparison between calculated values and experimental values.We found that the almost unchanged 4πM_(s) andμ_(i) are not affected,while the changed H_(c),intrinsic K_(grain),and f_(r) are strongly dependent on the seed layer and seed layer material.Moreover,the extracted damping constant is sensitive to the defects and/or internal stress and orientation of the grains.Therefore,the soft magnetic properties and microwave properties are adjusted and optimized by seed layers with different materials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574122 and 11704167)the Fundamental Research Funds for the Central Universities,China(Grant Nos.lzujbky-2017-k20 and lzujbky-2017-31)
文摘The oriented(CoIr)_(100-x)P_x(P = B, Ni, and SiO_2) soft magnetic films are prepared. Their morphology is measured using transmission electron microscopy(TEM), and reveals that these films exhibit good crystallinity and high degree of the c-axis orientation. The magnetic properties are thoroughly investigated as a function of doping x. Our results show that all of these films possess negative magnetocrystalline anisotropy as required by possible applications. Both the intrinsic and extrinsic contributions are considered to interpret the broadening of the ferromagnetic resonance spectral linewidth. The intrinsic Gilbert damping is identified as the main cause of the linewidth broadening, while the extrinsic part originating from inhomogeneities only plays a minor role. More interestingly, our results show that the damping constant can be controlled by using the doping method.
基金the National Natural Science Foundation of China(Grant Nos.11704167,11704317,and 11574122).
文摘We present detailed investigations of structural and static/dynamic magnetic properties of hydrogenated hcp-Co_(80)^(57)Fe_(4)Ir_(16) soft magnetic thin films.Two different kinds of defects,i.e.,destructive and non-destructive,were demonstrated by controlling the negative bias voltage of the hydrogenation process.Our results show that the structure and magnetic properties of our sample can be tuned by the density of the induced defects.These results provide better understanding of the hydrogenation effect and thus can be used in the future for materials processing to meet the requirements of different devices.