Nanomaterials with various dimensionalities(e.g.,nanowires,nanofilms,two-dimensional materials,and three-dimensional nanostructures)have shown great potential in the recent development of flexible electronics.Conventi...Nanomaterials with various dimensionalities(e.g.,nanowires,nanofilms,two-dimensional materials,and three-dimensional nanostructures)have shown great potential in the recent development of flexible electronics.Conventionally,organic solvents are inevitable while integrating nanomaterials onto flexible substrates,where polymer mediator-assisted transfer techniques are involved.This often damages the flexible substrate and thus hamper the large-scale application of nanomaterials.Here we report a method using watersoluble sugar as a mediator to facilely transfer nanomaterials onto rigid or flexible substrates.This method requires no organic solvent during transfer.More importantly,the morphology and properties of transferred nanomaterials,such as shape,microstructure,resistivity,and transmittance are well preserved on the target substrate.We believe that this universal and rapid transfer method can greatly advance the applications of nanomaterials in the field of flexible devices and beyond.展开更多
基金financially supported by the funds of the“Science Technology and Innovation Committee of Shenzhen Municipality”(grant No.JCYJ20160613160524999 and JCYJ20170817111714314)“Guangdong Innovative and Entrepreneurial Research Team Program”under contract No.2016ZT06G587+1 种基金the National Natural Science Foundation of China(No.51771089 and U1613204)the Key-Area Research and Development Program of Guangdong Province(No.2019B010931001).
文摘Nanomaterials with various dimensionalities(e.g.,nanowires,nanofilms,two-dimensional materials,and three-dimensional nanostructures)have shown great potential in the recent development of flexible electronics.Conventionally,organic solvents are inevitable while integrating nanomaterials onto flexible substrates,where polymer mediator-assisted transfer techniques are involved.This often damages the flexible substrate and thus hamper the large-scale application of nanomaterials.Here we report a method using watersoluble sugar as a mediator to facilely transfer nanomaterials onto rigid or flexible substrates.This method requires no organic solvent during transfer.More importantly,the morphology and properties of transferred nanomaterials,such as shape,microstructure,resistivity,and transmittance are well preserved on the target substrate.We believe that this universal and rapid transfer method can greatly advance the applications of nanomaterials in the field of flexible devices and beyond.