In clinical cancer research,it is quite promising to develop multimodal synergistic therapeutic strategies.Photodynamic and photothermal synergistic therapy is a very desirable multimodal therapy strategy.Herein,we re...In clinical cancer research,it is quite promising to develop multimodal synergistic therapeutic strategies.Photodynamic and photothermal synergistic therapy is a very desirable multimodal therapy strategy.Herein,we report a facile and simple method to construct a nanotherapeutic agent for photodynamic and photothermal therapy.This nanotherapeutic agent(ZnO@Ce6-PDA)is composed of a ZnO nanoparticle core,an interlayer of photosensitizer chlorin e6(Ce6)and an outer layer of polydopamine(PDA).Due to the existence of Ce6,the ZnO@Ce6-PDA can efficiently generate singlet oxygen(1O2)under 660 nm laser irradiation.Moreover,the ZnO@Ce6-PDA can serve as a photothermal agent,because of the excellent photothermal conversion efficiency of the PDA coating layer in the presence of 780 nm laser.Experiment results demonstrated that the designed nanotherapeutic agent had outstanding phototoxicity upon the combination of laser irradiation at 660 and 780 nm.Thus,our work proves that the ZnO@Ce6-PDA is a promising photodynamic/photothermal dual-modal nanotherapeutic agent for enhanced cancer therapy.展开更多
Chemo-photothermal treatment is one of the most efficient strategies for cancer therapy.However,traditional drug carriers without near-infrared absorption capacity need to be loaded with materials behaving phototherma...Chemo-photothermal treatment is one of the most efficient strategies for cancer therapy.However,traditional drug carriers without near-infrared absorption capacity need to be loaded with materials behaving photothermal properties,as it results in complicated synthesis process,inefficient photothermal effects and hindered NIR-mediated drug release.Herein we report a facile synthesis of a polyethylene glycol(PEG)linked liposome(PEG-liposomes)coated doxorubicin(DOX)-loaded ordered mesoporous carbon(OMC)nanocomponents(PEG-LIP@OMC/DOX)by simply sonicating DOX and OMC in PEG-liposomes suspensions.The as-obtained PEG-LIP@OMC/DOX exhibits a nanoscale size(600±15 nm),a negative surface potential(-36.70 mV),high drug loading(131.590 mg/g OMC),and excellent photothermal properties.The PEG-LIP@OMC/DOX can deliver loaded DOX to human MCF-7 breast cancer cells(MCF-7)and the cell toxicity viability shows that DOX unloaded PEG-LIP@OMC has no cytotoxicity,confirming the PEG-LIP@OMC itself has excellent biocompatibility.The NIR-triggered release studies demonstrate that this NIR-responsive drug delivery system enables on-demand drug release.Furthermore,cell viability results using human MCF-7 cells demonstrated that the combination of NIR-based hyperthermal therapy and triggered chemothe rapy can provide higher therapeutic efficacy than re spective monothe rapies.With these excellent features,we believe that this phospholipid coating based multifunctional delivery system strategy should promote the application of OMC in nanomedical applications.展开更多
基金supported in part by the Key Project of Natural Science Foundation of China (Nos.21775036,21675046,21735002, 21521063 and 21874035)the Key Point Research and Invention Program of Hunan Province (No.2017DK2011)+1 种基金the Research Foundation of Education Bureau of Hunan Province (No.18B027)the Hunan Provincial Natural Science Foundation (No.2018JJ2033)
文摘In clinical cancer research,it is quite promising to develop multimodal synergistic therapeutic strategies.Photodynamic and photothermal synergistic therapy is a very desirable multimodal therapy strategy.Herein,we report a facile and simple method to construct a nanotherapeutic agent for photodynamic and photothermal therapy.This nanotherapeutic agent(ZnO@Ce6-PDA)is composed of a ZnO nanoparticle core,an interlayer of photosensitizer chlorin e6(Ce6)and an outer layer of polydopamine(PDA).Due to the existence of Ce6,the ZnO@Ce6-PDA can efficiently generate singlet oxygen(1O2)under 660 nm laser irradiation.Moreover,the ZnO@Ce6-PDA can serve as a photothermal agent,because of the excellent photothermal conversion efficiency of the PDA coating layer in the presence of 780 nm laser.Experiment results demonstrated that the designed nanotherapeutic agent had outstanding phototoxicity upon the combination of laser irradiation at 660 and 780 nm.Thus,our work proves that the ZnO@Ce6-PDA is a promising photodynamic/photothermal dual-modal nanotherapeutic agent for enhanced cancer therapy.
基金the National Natural Science Foundation of China(Nos.21735002,21521063,21675046,21874035,21806186 and 21775036)the Natural Science Foundation of Hunan Province,China(No.2018JJ2033)the Key Point Research and Invention Program of Hunan Province,China(No.2017DK2011)。
文摘Chemo-photothermal treatment is one of the most efficient strategies for cancer therapy.However,traditional drug carriers without near-infrared absorption capacity need to be loaded with materials behaving photothermal properties,as it results in complicated synthesis process,inefficient photothermal effects and hindered NIR-mediated drug release.Herein we report a facile synthesis of a polyethylene glycol(PEG)linked liposome(PEG-liposomes)coated doxorubicin(DOX)-loaded ordered mesoporous carbon(OMC)nanocomponents(PEG-LIP@OMC/DOX)by simply sonicating DOX and OMC in PEG-liposomes suspensions.The as-obtained PEG-LIP@OMC/DOX exhibits a nanoscale size(600±15 nm),a negative surface potential(-36.70 mV),high drug loading(131.590 mg/g OMC),and excellent photothermal properties.The PEG-LIP@OMC/DOX can deliver loaded DOX to human MCF-7 breast cancer cells(MCF-7)and the cell toxicity viability shows that DOX unloaded PEG-LIP@OMC has no cytotoxicity,confirming the PEG-LIP@OMC itself has excellent biocompatibility.The NIR-triggered release studies demonstrate that this NIR-responsive drug delivery system enables on-demand drug release.Furthermore,cell viability results using human MCF-7 cells demonstrated that the combination of NIR-based hyperthermal therapy and triggered chemothe rapy can provide higher therapeutic efficacy than re spective monothe rapies.With these excellent features,we believe that this phospholipid coating based multifunctional delivery system strategy should promote the application of OMC in nanomedical applications.