Photodynamic therapy(PDT)has been emerged as a promising modality for cancer treatment.However,the development of drug delivery system enabling continuous release of photosensitizers(PSs)for long-term PDT treatment st...Photodynamic therapy(PDT)has been emerged as a promising modality for cancer treatment.However,the development of drug delivery system enabling continuous release of photosensitizers(PSs)for long-term PDT treatment still remains challenges.Herein,a H_(2)O_(2)-responsive injectable hydrogel,covalently crosslinked by N^(1)-(4-boronobenzyl)-N^(3)-(4-boronophenyl)-N^(1),N^(1),N^(3),N^(3)-tetramethylpropane-1,3-diaminium(TSPBA)with PVA containing polythiophene quaternary ammonium salt(PT2)polymer dots(PDots)as a photosensitizer was fabricated.Under the stimulation of H_(2)O_(2),the obtained injectable hydrogel gradually degrades and releases PDots.In vitro experiments suggested that the released PDots could realize efficient tumor cells inhibition through its robust singlet oxygen generation capability upon 577 nm laser irradiation.In vivo studies demonstrated a sustained retention of PDots for at least 7 days following single-dose administration,facilitating efficient tumor inhibition with light treatments for 3 times without apparent biotoxicity.This work presents an innovative polymer dots-based composite local drug delivery system for long-term PDT in cancer treatment.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52272052 and 51972315)。
文摘Photodynamic therapy(PDT)has been emerged as a promising modality for cancer treatment.However,the development of drug delivery system enabling continuous release of photosensitizers(PSs)for long-term PDT treatment still remains challenges.Herein,a H_(2)O_(2)-responsive injectable hydrogel,covalently crosslinked by N^(1)-(4-boronobenzyl)-N^(3)-(4-boronophenyl)-N^(1),N^(1),N^(3),N^(3)-tetramethylpropane-1,3-diaminium(TSPBA)with PVA containing polythiophene quaternary ammonium salt(PT2)polymer dots(PDots)as a photosensitizer was fabricated.Under the stimulation of H_(2)O_(2),the obtained injectable hydrogel gradually degrades and releases PDots.In vitro experiments suggested that the released PDots could realize efficient tumor cells inhibition through its robust singlet oxygen generation capability upon 577 nm laser irradiation.In vivo studies demonstrated a sustained retention of PDots for at least 7 days following single-dose administration,facilitating efficient tumor inhibition with light treatments for 3 times without apparent biotoxicity.This work presents an innovative polymer dots-based composite local drug delivery system for long-term PDT in cancer treatment.