The mechanism of lightning that ignites a forest fire and the lightning that occurs above a forest fire are explained at the molecular level. It is based on two phenomena, namely, internal charge separation inside the...The mechanism of lightning that ignites a forest fire and the lightning that occurs above a forest fire are explained at the molecular level. It is based on two phenomena, namely, internal charge separation inside the atmospheric cloud particles and the existence of a layer of positively charged hydrogen atoms sticking out of the surface of the liquid layer of water on the surface of rimers. Strong turbulence-driven collisions of the ice particles and water droplets with the rimers give rise to breakups of the ice particles and water droplets into positively and negatively charged fragments leading to charge separation. Hot weather in a forest contributes to the updraft of hot and humid air, which follows the same physical/chemical processes of normal lightning proposed and explained recently[1]. Lightning would have a high probability of lighting up and burning the dry biological materials in the ground of the forest, leading to a forest (wild) fire. The burning of trees and other plants would release a lot of heat and moisture together with a lot of smoke particles (aerosols) becoming a strong updraft. The condition for creating lightning is again satisfied which would result in further lightning high above the forest wild fire.展开更多
The effects of C ion irradiation on multilayer ReSe2flakes are studied by utilizing different kinds of technologies. The domain sizes, thickness, morphologies of the multilayer ReSe2flakes on the Al2O3substrates befor...The effects of C ion irradiation on multilayer ReSe2flakes are studied by utilizing different kinds of technologies. The domain sizes, thickness, morphologies of the multilayer ReSe2flakes on the Al2O3substrates before and after 1.0-MeV C ion irradiation with different fluence rates are studied by atomic force microscope and scanning electron microscopy. The atomic vibrational spectra of multilayer ReSe2flakes are detected by micro-Raman spectra. The redshifts of the Raman modes after 1.0-MeV C ion irradiation are observed from the micro-Raman spectra. The elemental compositions and bonding configurations of the multilayer ReSe2samples before and after irradiation processes are characterized by x-ray photoelectron spectroscopy. The structural properties are also investigated by x-ray diffraction, and it is concluded that after 1.0-MeV C ion irradiation process, multilayer ReSe2samples continue to grow on Al2O3substrates, the increase of crystallite size also reveals that the crystallinity is improved with the increase of the layer number after 1.0-MeV C ion irradiation.展开更多
Our preliminary proteomics analysis suggested that expression of microtubule-associated protein tau is elevated in the spinal cord after injury. Therefore, the first aim of the present study was to examine tau express...Our preliminary proteomics analysis suggested that expression of microtubule-associated protein tau is elevated in the spinal cord after injury. Therefore, the first aim of the present study was to examine tau expression in the injured spinal cord. The second aim was to determine whether tau can regulate neural stem cell migration, a critical factor in the successful treatment of spinal cord injury. We established rat models of spinal cord injury and injected them with mouse hippocampal neural stem cells through the tail vein. We used immunohistochemistry to show that the expression of tau protein and the number of migrated neural stem cells were markedly increased in the injured spinal cord. Furthermore, using a Transwell assay, we showed that neural stem cell migration was not affected by an elevated tau concentration in the outer chamber, but it was decreased by changes in intracellular tau phosphorylation state. These results demonstrate that neural stem cells have targeted migration capability at the site of injury, and that although tau is not a chemokine for targeted migration of neural stem cells, intracellular tau phosphorylation/dephosphorylation can inhibit cell migration.展开更多
A series of Ni based catalysts with different supports and basic additives were prepared by sequential impregnation method. The catalysts were characterized by XRD, BET, H2-TPR and CO2-TPD techniques. It was found tha...A series of Ni based catalysts with different supports and basic additives were prepared by sequential impregnation method. The catalysts were characterized by XRD, BET, H2-TPR and CO2-TPD techniques. It was found that the introduction of basic additives enhanced the basicities of catalyats and promoted the dispersities of Ni particles by strong interaction between Ni2+ and basic additives. Among the Ni based catalysts, 10%Ni/10%La203/ZrO2 showed the superior performance in sorbitol hydrogenolysis. The synergistic effect of Ni and La203 was proven to play an essential role in selective synthesis of EG and 1,2-PG. In the optimal reaction condition, the catalyst presented 100% sorbitol conversion and over 48% glycols (EG and 1,2-PG) yield. The kinetics study of polyols (sorbitol, xylitol and glycerol) hydrogenolysis showed that polyols with more hydroxyl number have higher activity and products distribution was final results of kinetic balance, which could give us some inspiration abeut how to change the products selectivity.展开更多
As one form of the energy resources, coal is becoming more and more important. Due to the particularity in coal mine production, mine accidents some time occur in countries all over the world, which result in large ca...As one form of the energy resources, coal is becoming more and more important. Due to the particularity in coal mine production, mine accidents some time occur in countries all over the world, which result in large casualties and economic losses. As equipment that can provides the miners with an emergency shelter when the coal mine accidents occur, the under ground coal mine refuge chamber is paid more and more attention by coal mine enterprises, and the application of the refuge chamber is increasingly widespread. The general functions, the classification, and the successful applications of the underground coal mine refuge chamber are illustrated first, and the research significance on the tmderground coal mine refuge chamber is stated. Following, the development status quo at home and abroad for the refuge chamber is introduced. Then, the implementation methods for the key functions of the underground coal mine refuge chamber are demonstrated. Finally, the prospect for the development of the underground coal mine refuge chamber is stated.展开更多
The biorefinery process for sugarcane bagasse saccharification generally requires signifcant accessibility of cellulose. We reported a novel method of cascade cellulase enzymatic hydrol- ysis coupling with ultrafine g...The biorefinery process for sugarcane bagasse saccharification generally requires signifcant accessibility of cellulose. We reported a novel method of cascade cellulase enzymatic hydrol- ysis coupling with ultrafine grinding pretreatment for sugarcane bagasse saccharification. Three enzymatic hydrolysis modes including single cellulase enzymatic hydrolysis, mixed cellulase enzymatic hydrolysis, and cascade cellulase enzymatic hydrolysis were compared. The changes on the functional group and surface morphology of bagasse during cascade cellulase enzymatic hydrolysis were also examined by FT-IR and SEM respectively. The results showed that cascade enzymatic hydrolysis was the most efficient way to enhance the sugarcane bagasse saccharification. More than 65% of reducing sugar yield with 90.1% of glucose selectivity was achieved at 50 ℃, pH=4.8 for 72 h (1200 r/min) with cellulase I of 7.5 FPU/g substrate and cellulase II of 5 FPU/g substrate.展开更多
Biomass is a nature renewable resource which can be used for the production of high value chemicals and bio-fuels. In the present work, the transformation of sawdust into aromat- ics such as benzene, toluene and xylen...Biomass is a nature renewable resource which can be used for the production of high value chemicals and bio-fuels. In the present work, the transformation of sawdust into aromat- ics such as benzene, toluene and xylenes was investigated over a series of zeolite catalysts (NaZSM-5, HZSM-5, ReY and HY catalysts). Among the tested catalysts, the HZSM-5 catalyst shows the highest activity for the production of aromatics. The yield and carbon selectivity of aromatics reached about 26.5% and 62.5C-mo1%, respectively over the HZSM-5 catalyst under the optimal condition of T=450 ℃, f(N2)=300 cm^3/min, and catalyst/lignin ratio of 2. The effects of the reaction conditions including temperature, gas flow rate, and catalyst/sawdust ratio on the production of aromatics were investigated in detail and the formation of aromatics from lignocellulosic biomass was also addressed.展开更多
One simple and environmental friendly synthesis strategy for preparing low-cost magnetic Fe3C@C materials has been facilely developed using a modified sol-gel approach,wherein natural magnetite acted as the iron sourc...One simple and environmental friendly synthesis strategy for preparing low-cost magnetic Fe3C@C materials has been facilely developed using a modified sol-gel approach,wherein natural magnetite acted as the iron source.A chelating polycarboxylic acid such as citric acid(CA)was employed as the carbon source,and it dissolved Fe very effectively,Fe3O4 and natural magnetite to composite an iron-citrate complex with the assistance of ammonium hydroxide.The core-shell structure of the as-prepared nanocomposites was formed directly by high-temperature pyrolysis.The Fe3C@C materials exhibited superparamagnetic properties(38.09 emu/mg),suggesting potential applications in biomedicine,environment,absorption,catalysis,etc.展开更多
BACKGROUND Complete response after neoadjuvant chemotherapy(r NACT) elevates the surgical outcomes of patients with breast cancer, however, non-r NACT have a higher risk of death and recurrence.AIM To establish novel ...BACKGROUND Complete response after neoadjuvant chemotherapy(r NACT) elevates the surgical outcomes of patients with breast cancer, however, non-r NACT have a higher risk of death and recurrence.AIM To establish novel machine learning(ML)-based predictive models for predicting probability of r NACT in breast cancer patients who intends to receive NACT.METHODS A retrospective analysis of 487 breast cancer patients who underwent mastectomy or breast-conserving surgery and axillary lymph node dissection following neoadjuvant chemotherapy at the Hubei Cancer Hospital between January 1, 2013, and October 1, 2021. The study cohort was divided into internal training and testing datasets in a 70:30 ratio for further analysis. A total of twenty-four variables were included to develop predictive models for r NACT by multiple MLbased algorithms. A feature selection approach was used to identify optimal predictive factors. These models were evaluated by the receiver operating characteristic(ROC) curve for predictive performance.RESULTS Analysis identified several significant differences between the r NACT and nonr NACT groups, including total cholesterol, low-density lipoprotein, neutrophilto-lymphocyte ratio, body mass index, platelet count, albumin-to-globulin ratio, platelet-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio. The areas under the curve of the six models ranged from 0.81 to 0.96. Some ML-based models performed better than models using conventional statistical methods in both ROC curves. The support vector machine(SVM) model with twelve variables introduced was identified as the best predictive model.CONCLUSION By incorporating retreatment serum lipids and serum inflammation markers, it is feasible to develop ML-based models for the preoperative prediction of r NACT and therefore facilitate the choice of treatment, particularly the SVM, which can improve the prediction of r NACT in patients with breast cancer.展开更多
Supercontinuum(SC)light source has advanced ultrafast laser spectroscopy in condensed matter science,biology,physics,and chemistry.Compared to the frequently used photonic crystal fibers and bulk materials,femtosecond...Supercontinuum(SC)light source has advanced ultrafast laser spectroscopy in condensed matter science,biology,physics,and chemistry.Compared to the frequently used photonic crystal fibers and bulk materials,femtosecond laser filamentation in gases is damage-immune for supercontinuum generation.A bottleneck problem is the strong jitters from filament induced self-heating at kHz repetition rate level.We demonstrated stable kHz supercontinuum generation directly in air with multiple mJ level pulse energy.This was achieved by applying an external DC electric field to the air plasma filament.Beam pointing jitters of the 1 kHz air filament induced SC light were reduced by more than 2 fold.The stabilized high repetition rate laser filament offers the opportunity for stable intense SC generation and its applications in air.展开更多
The characteristics of plasmas play an important role in femtosecond laser filament-based applications.Spectroscopic analysis is used to experimentally investigate the plasma density and its temperature of the air fil...The characteristics of plasmas play an important role in femtosecond laser filament-based applications.Spectroscopic analysis is used to experimentally investigate the plasma density and its temperature of the air filament under different pulse repetition rates.In our experiments,the measured average plasma density of the filament is 1.54×10^(17)cm^(-3)and the temperature of the plasma is about 5100 K under 100 Hz pulse repetition rate.The plasma density decreases to1.43×10^(17)cm^(-3)and the temperature increases to 6230 K as the pulse repetition rate increases to 1000 Hz.The experimental observation agrees with the numerical simulation by solving the nonlinear Schr?dinger equations with repetition rate related“low density hole”correction.展开更多
Controlled quantum teleportation(CQT), which is regarded as the prelude and backbone for a genuine quantum internet, reveals the cooperation, supervision, and control relationship among the sender, receiver, and contr...Controlled quantum teleportation(CQT), which is regarded as the prelude and backbone for a genuine quantum internet, reveals the cooperation, supervision, and control relationship among the sender, receiver, and controller in the quantum network within the simplest unit. Compared with low-dimensional counterparts, high-dimensional CQT can exhibit larger information transmission capacity and higher superiority of the controller's authority. In this article, we report a proof-of-principle experimental realization of three-dimensional(3D) CQT with a fidelity of 97.4% ± 0.2%. To reduce the complexity of the circuit, we simulate a standard 4-qutrit CQT protocol in a 9×9-dimensional two-photon system with high-quality operations. The corresponding control powers are 48.1% ± 0.2% for teleporting a qutrit and 52.8% ± 0.3% for teleporting a qubit in the experiment, which are both higher than the theoretical value of control power in 2-dimensional CQT protocol(33%). The results fully demonstrate the advantages of high-dimensional multi-partite entangled networks and provide new avenues for constructing complex quantum networks.展开更多
Sulfur-containing dynamic polymers had attracted significant attention due to their unique chemical structures with high reversibility.Utilizating sulfur, an inexpensive industrial waste product, to synthesize dynamic...Sulfur-containing dynamic polymers had attracted significant attention due to their unique chemical structures with high reversibility.Utilizating sulfur, an inexpensive industrial waste product, to synthesize dynamic polysulfide polymers through reverse vulcanization has been a notable approach. However, this method required high temperatures and resulted in the release of unpleasant oders. In this study, we presented a robust method for the preparation of sulfur-rich polymers with dynamic polysulfide bonds from elemental sulfur and inexpensive epoxide monomers via a one-pot strategy at the mild room temperature. Different types of polysulfide molecules and polymers were synthesized by reacting various epoxide compounds with sulfur, along with the investigation of their structures and dynamic behaviors. It was noteworthy that the obatined polymers prepared from m-(2,3-epoxypropoxy)-N,N-bis(2,3-epoxypropyl)aniline and elemental sulfur exhibit multiple dynamic behaviors, including polysulfide metathesis and polysulfide-thiol exchange, enabling their rapid stress relaxation, self-healing, reprocessing and degradable properties of the cross-linked polymer. More importantly, the hydroxyl groups at the side chains from epoxide ring opening exhibited potential transesterification. This work provided a facile strategy for designing dynamic sulfur-rich polymers via a mild synthesis route.展开更多
As intense,ultrashort,kHz-repetition-rate laser systems become commercially available,pulse cumulative effects are critical for laser filament-based applications.In this work,the pulse repetition-rate effect on femtos...As intense,ultrashort,kHz-repetition-rate laser systems become commercially available,pulse cumulative effects are critical for laser filament-based applications.In this work,the pulse repetition-rate effect on femtosecond laser filamentation in air was investigated both numerically and experimentally.The pulse repetition-rate effect has negligible influence at the leading edge of the filament.Clear intensity enhancement from a high-repetition pulse is observed at the peak and tailing edge of the laser filament.As the repetition rate of the laser pulses increases from 100 to 1000 Hz,the length of the filament extends and the intensity inside the filament increases.A physical picture based on the pulse repetition-rate dependent‘low-density hole’effect on filamentation is proposed to explain the obtained results well.展开更多
Chiral quantum optics is a new research area in light-matter interaction that depends on the direction of light propagation and offers a new path for the quantum regulation of light-matter interactions.In this paper,w...Chiral quantum optics is a new research area in light-matter interaction that depends on the direction of light propagation and offers a new path for the quantum regulation of light-matter interactions.In this paper,we study a spinning Kerr-type microresonator coupled withΛ-type atom ensembles,which are driven in opposite directions to generate asymmetric photon statistics.We find that a photon blockade can only be generated by driving the spinning resonator on right side without driving the spinning microresonator from the left side,resulting in chirality.The coupling strength between system modes can be precisely controlled by adjusting the detuning amount of the atomic pump field.Because of the splitting of the resonant frequency generated by the Fizeau drag,the destructive quantum interference generated in right side drive prevents the nonresonant transition path of state|1,0⟩to state|2,0⟩.This direction-dependent chiral quantum optics is expected to be applied to chiral optical devices,single-photon sources and nonreciprocal quantum communications.展开更多
Bell-state analysis(BSA) has great application in the quantum communication. To our best knowledge, the current works are devoted to the physical realization of symmetrical 2×2-dimensional or 2^N× 2^N-dimens...Bell-state analysis(BSA) has great application in the quantum communication. To our best knowledge, the current works are devoted to the physical realization of symmetrical 2×2-dimensional or 2^N× 2^N-dimensional 2-qudit BSA, and there is no work focused on the physical realization of the asymmetrical high-dimensional(for example 3×4-dimensional 2-qudit) Bell-states complete analysis. In this paper, by using the nonlinear interaction between the atoms and photons, we propose a scheme to completely distinguish the asymmetrical 3×4-dimensional 2-qudit Bell states of a hybrid system. We use the quantum information splitting, which is exploited to resolve the degree-mismatch issue in the quantum state sharing schemes, as an example to show the application of the asymmetrical BSA. Finally, we discuss its possible realization with current experimental techniques. Our asymmetrical high-dimensional BSA protocol may pave a new way for high-capacity long-distance quantum communication.展开更多
Laser polarization and its intensity inside a filament core play an important role in filament-based applications.However,polarization dependent clamping intensity inside filaments has been overlooked to interpret the...Laser polarization and its intensity inside a filament core play an important role in filament-based applications.However,polarization dependent clamping intensity inside filaments has been overlooked to interpret the polarization-related filamentation phenomena.Here,we report on experimental and numerical investigations of polarization dependent clamping intensity inside a femtosecond filament in air.By adjusting the initial polarization from linear to circular,the clamping intensity is increased by 1.36 times when using a 30 cm focal length lens for filamentation.The results indicate that clamping intensity inside the filament is sensitive to laser polarization,which has to be considered to fully understand polarizationrelated phenomena.展开更多
We report on a systematic experimental study on the fluorescence spectra produced from a femtosecond laser filament in air under a high electric field. The electric field alone was strong enough to create corona disch...We report on a systematic experimental study on the fluorescence spectra produced from a femtosecond laser filament in air under a high electric field. The electric field alone was strong enough to create corona discharge(CD). Fluorescence spectra from neutral and ionic air molecules were measured and compared with pure high-voltage CD and pure laser filamentation(FIL). Among them, high electric field assisted laser FIL produced nitrogen fluorescence more efficiently than either pure CD or pure FIL processes. The nonlinear enhancement of fluorescence from the interaction of the laser filament and corona discharging electric field resulted in a more efficient ionization along the laser filament zone, which was confirmed by the spectroscopic measurement of both ionization-induced fluorescence and plasma-scattered 800 nm laser pulses. This is believed to be the key precursor process for filament-guided discharge.展开更多
文摘The mechanism of lightning that ignites a forest fire and the lightning that occurs above a forest fire are explained at the molecular level. It is based on two phenomena, namely, internal charge separation inside the atmospheric cloud particles and the existence of a layer of positively charged hydrogen atoms sticking out of the surface of the liquid layer of water on the surface of rimers. Strong turbulence-driven collisions of the ice particles and water droplets with the rimers give rise to breakups of the ice particles and water droplets into positively and negatively charged fragments leading to charge separation. Hot weather in a forest contributes to the updraft of hot and humid air, which follows the same physical/chemical processes of normal lightning proposed and explained recently[1]. Lightning would have a high probability of lighting up and burning the dry biological materials in the ground of the forest, leading to a forest (wild) fire. The burning of trees and other plants would release a lot of heat and moisture together with a lot of smoke particles (aerosols) becoming a strong updraft. The condition for creating lightning is again satisfied which would result in further lightning high above the forest wild fire.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12105036, 11775135, and 11805108)the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2020QA088 and ZR2021QA074)+1 种基金the Taishan Scholars Program of Shandong Province, China (Grant No. tsqn201812104)the State Key Laboratory of Nuclear Physics and Technology at Peking University, China。
文摘The effects of C ion irradiation on multilayer ReSe2flakes are studied by utilizing different kinds of technologies. The domain sizes, thickness, morphologies of the multilayer ReSe2flakes on the Al2O3substrates before and after 1.0-MeV C ion irradiation with different fluence rates are studied by atomic force microscope and scanning electron microscopy. The atomic vibrational spectra of multilayer ReSe2flakes are detected by micro-Raman spectra. The redshifts of the Raman modes after 1.0-MeV C ion irradiation are observed from the micro-Raman spectra. The elemental compositions and bonding configurations of the multilayer ReSe2samples before and after irradiation processes are characterized by x-ray photoelectron spectroscopy. The structural properties are also investigated by x-ray diffraction, and it is concluded that after 1.0-MeV C ion irradiation process, multilayer ReSe2samples continue to grow on Al2O3substrates, the increase of crystallite size also reveals that the crystallinity is improved with the increase of the layer number after 1.0-MeV C ion irradiation.
基金supported by the National Natural Science Foundation of China,No.81250016,31572217
文摘Our preliminary proteomics analysis suggested that expression of microtubule-associated protein tau is elevated in the spinal cord after injury. Therefore, the first aim of the present study was to examine tau expression in the injured spinal cord. The second aim was to determine whether tau can regulate neural stem cell migration, a critical factor in the successful treatment of spinal cord injury. We established rat models of spinal cord injury and injected them with mouse hippocampal neural stem cells through the tail vein. We used immunohistochemistry to show that the expression of tau protein and the number of migrated neural stem cells were markedly increased in the injured spinal cord. Furthermore, using a Transwell assay, we showed that neural stem cell migration was not affected by an elevated tau concentration in the outer chamber, but it was decreased by changes in intracellular tau phosphorylation state. These results demonstrate that neural stem cells have targeted migration capability at the site of injury, and that although tau is not a chemokine for targeted migration of neural stem cells, intracellular tau phosphorylation/dephosphorylation can inhibit cell migration.
基金This work was supported by the National Natural Science Foundation of China (No.51376185 and No.51106108), the National Basic Research Program of China (No.2012CB215304), the National High Technology Research and Development Program of China (No.2012AA101806), and the Natural Science Foundation of Guangdong Province (No.$2013010011612).
文摘A series of Ni based catalysts with different supports and basic additives were prepared by sequential impregnation method. The catalysts were characterized by XRD, BET, H2-TPR and CO2-TPD techniques. It was found that the introduction of basic additives enhanced the basicities of catalyats and promoted the dispersities of Ni particles by strong interaction between Ni2+ and basic additives. Among the Ni based catalysts, 10%Ni/10%La203/ZrO2 showed the superior performance in sorbitol hydrogenolysis. The synergistic effect of Ni and La203 was proven to play an essential role in selective synthesis of EG and 1,2-PG. In the optimal reaction condition, the catalyst presented 100% sorbitol conversion and over 48% glycols (EG and 1,2-PG) yield. The kinetics study of polyols (sorbitol, xylitol and glycerol) hydrogenolysis showed that polyols with more hydroxyl number have higher activity and products distribution was final results of kinetic balance, which could give us some inspiration abeut how to change the products selectivity.
文摘As one form of the energy resources, coal is becoming more and more important. Due to the particularity in coal mine production, mine accidents some time occur in countries all over the world, which result in large casualties and economic losses. As equipment that can provides the miners with an emergency shelter when the coal mine accidents occur, the under ground coal mine refuge chamber is paid more and more attention by coal mine enterprises, and the application of the refuge chamber is increasingly widespread. The general functions, the classification, and the successful applications of the underground coal mine refuge chamber are illustrated first, and the research significance on the tmderground coal mine refuge chamber is stated. Following, the development status quo at home and abroad for the refuge chamber is introduced. Then, the implementation methods for the key functions of the underground coal mine refuge chamber are demonstrated. Finally, the prospect for the development of the underground coal mine refuge chamber is stated.
基金the National Basic Research Program of China,the National Natural Science Foundation of China,the Key Research Program of the Chinese Academy of Sciences,the Creative Foundation of President of Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
基金This work was supported by the National Highteeh R&D Program of China (No.2012AA101806), the National Natural Science Foundation of China (No.51306191), and the National Key Technology R&D Program (No.2014BAD02B01).
文摘The biorefinery process for sugarcane bagasse saccharification generally requires signifcant accessibility of cellulose. We reported a novel method of cascade cellulase enzymatic hydrol- ysis coupling with ultrafine grinding pretreatment for sugarcane bagasse saccharification. Three enzymatic hydrolysis modes including single cellulase enzymatic hydrolysis, mixed cellulase enzymatic hydrolysis, and cascade cellulase enzymatic hydrolysis were compared. The changes on the functional group and surface morphology of bagasse during cascade cellulase enzymatic hydrolysis were also examined by FT-IR and SEM respectively. The results showed that cascade enzymatic hydrolysis was the most efficient way to enhance the sugarcane bagasse saccharification. More than 65% of reducing sugar yield with 90.1% of glucose selectivity was achieved at 50 ℃, pH=4.8 for 72 h (1200 r/min) with cellulase I of 7.5 FPU/g substrate and cellulase II of 5 FPU/g substrate.
基金ACKNOWLEDGMENTS This work was supported by the National Nat- ural Science Foundation of China (No.51161140331) and the National Key Basic Program of China (No.2013CB228105).
文摘Biomass is a nature renewable resource which can be used for the production of high value chemicals and bio-fuels. In the present work, the transformation of sawdust into aromat- ics such as benzene, toluene and xylenes was investigated over a series of zeolite catalysts (NaZSM-5, HZSM-5, ReY and HY catalysts). Among the tested catalysts, the HZSM-5 catalyst shows the highest activity for the production of aromatics. The yield and carbon selectivity of aromatics reached about 26.5% and 62.5C-mo1%, respectively over the HZSM-5 catalyst under the optimal condition of T=450 ℃, f(N2)=300 cm^3/min, and catalyst/lignin ratio of 2. The effects of the reaction conditions including temperature, gas flow rate, and catalyst/sawdust ratio on the production of aromatics were investigated in detail and the formation of aromatics from lignocellulosic biomass was also addressed.
基金supported by the National Natural Science Foundation of China(No.51876046 and No.51711540032)。
文摘One simple and environmental friendly synthesis strategy for preparing low-cost magnetic Fe3C@C materials has been facilely developed using a modified sol-gel approach,wherein natural magnetite acted as the iron source.A chelating polycarboxylic acid such as citric acid(CA)was employed as the carbon source,and it dissolved Fe very effectively,Fe3O4 and natural magnetite to composite an iron-citrate complex with the assistance of ammonium hydroxide.The core-shell structure of the as-prepared nanocomposites was formed directly by high-temperature pyrolysis.The Fe3C@C materials exhibited superparamagnetic properties(38.09 emu/mg),suggesting potential applications in biomedicine,environment,absorption,catalysis,etc.
文摘BACKGROUND Complete response after neoadjuvant chemotherapy(r NACT) elevates the surgical outcomes of patients with breast cancer, however, non-r NACT have a higher risk of death and recurrence.AIM To establish novel machine learning(ML)-based predictive models for predicting probability of r NACT in breast cancer patients who intends to receive NACT.METHODS A retrospective analysis of 487 breast cancer patients who underwent mastectomy or breast-conserving surgery and axillary lymph node dissection following neoadjuvant chemotherapy at the Hubei Cancer Hospital between January 1, 2013, and October 1, 2021. The study cohort was divided into internal training and testing datasets in a 70:30 ratio for further analysis. A total of twenty-four variables were included to develop predictive models for r NACT by multiple MLbased algorithms. A feature selection approach was used to identify optimal predictive factors. These models were evaluated by the receiver operating characteristic(ROC) curve for predictive performance.RESULTS Analysis identified several significant differences between the r NACT and nonr NACT groups, including total cholesterol, low-density lipoprotein, neutrophilto-lymphocyte ratio, body mass index, platelet count, albumin-to-globulin ratio, platelet-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio. The areas under the curve of the six models ranged from 0.81 to 0.96. Some ML-based models performed better than models using conventional statistical methods in both ROC curves. The support vector machine(SVM) model with twelve variables introduced was identified as the best predictive model.CONCLUSION By incorporating retreatment serum lipids and serum inflammation markers, it is feasible to develop ML-based models for the preoperative prediction of r NACT and therefore facilitate the choice of treatment, particularly the SVM, which can improve the prediction of r NACT in patients with breast cancer.
基金This work was supported in part by NSAF(Grant No.U2130123)the International Partnership Program of Chinese Academy of Sciences(Grant Nos.181231KYSB20200033 and 181231KYSB20200040)Shanghai Science and Technology Program(Grant No.21511105000).S.L.C.acknowledges the support of COPL,Laval University,Quebec City,Canada.We thank Dr.Hao Guo,Ms.Na Chen,Mr.Xuan Zhang,Dr.Haiyi Sun from SIOM for help in the experiments and Prof.Howard M.Milchberg from the University of Maryland for the fruitful discussions and his reading of the manuscript.
文摘Supercontinuum(SC)light source has advanced ultrafast laser spectroscopy in condensed matter science,biology,physics,and chemistry.Compared to the frequently used photonic crystal fibers and bulk materials,femtosecond laser filamentation in gases is damage-immune for supercontinuum generation.A bottleneck problem is the strong jitters from filament induced self-heating at kHz repetition rate level.We demonstrated stable kHz supercontinuum generation directly in air with multiple mJ level pulse energy.This was achieved by applying an external DC electric field to the air plasma filament.Beam pointing jitters of the 1 kHz air filament induced SC light were reduced by more than 2 fold.The stabilized high repetition rate laser filament offers the opportunity for stable intense SC generation and its applications in air.
基金in part supported by the NSAF(No.U2130123)the International Partnership Program of Chinese Academy of Sciences(Nos.181231KYSB20200033 and 181231KYSB20200040)the Shanghai Science and Technology Program(No.21511105000)。
文摘The characteristics of plasmas play an important role in femtosecond laser filament-based applications.Spectroscopic analysis is used to experimentally investigate the plasma density and its temperature of the air filament under different pulse repetition rates.In our experiments,the measured average plasma density of the filament is 1.54×10^(17)cm^(-3)and the temperature of the plasma is about 5100 K under 100 Hz pulse repetition rate.The plasma density decreases to1.43×10^(17)cm^(-3)and the temperature increases to 6230 K as the pulse repetition rate increases to 1000 Hz.The experimental observation agrees with the numerical simulation by solving the nonlinear Schr?dinger equations with repetition rate related“low density hole”correction.
基金supported by the National Key Research and Development Program of China (Grant No. 2021YFE0113100)the National Natural Science Foundation of China (Grant Nos. 11904357, 12174367, 12204458,12374338, 62071064, and 62322513)+6 种基金the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301200)the Fundamental Research Funds for the Central UniversitiesUSTC Tang ScholarshipScience and Technological Fund of Anhui Province for Outstanding Youth(Grant No. 2008085J02)the China Postdoctoral Science Foundation (Grant No. 2021M700138)the China Postdoctoral for Innovative Talents (Grant No. BX2021289)the Shanghai Municipal Science and Technology Fundamental Project (Grant No. 21JC1405400)。
文摘Controlled quantum teleportation(CQT), which is regarded as the prelude and backbone for a genuine quantum internet, reveals the cooperation, supervision, and control relationship among the sender, receiver, and controller in the quantum network within the simplest unit. Compared with low-dimensional counterparts, high-dimensional CQT can exhibit larger information transmission capacity and higher superiority of the controller's authority. In this article, we report a proof-of-principle experimental realization of three-dimensional(3D) CQT with a fidelity of 97.4% ± 0.2%. To reduce the complexity of the circuit, we simulate a standard 4-qutrit CQT protocol in a 9×9-dimensional two-photon system with high-quality operations. The corresponding control powers are 48.1% ± 0.2% for teleporting a qutrit and 52.8% ± 0.3% for teleporting a qubit in the experiment, which are both higher than the theoretical value of control power in 2-dimensional CQT protocol(33%). The results fully demonstrate the advantages of high-dimensional multi-partite entangled networks and provide new avenues for constructing complex quantum networks.
基金financially supported by the State Key R&D Program of China (No. 2019YFA0706801)the National Natural Science Foundation of China (No. 52173079)the Fundamental Research Funds for the Central Universities (Nos. xtr052023001 and xzy022024024)。
文摘Sulfur-containing dynamic polymers had attracted significant attention due to their unique chemical structures with high reversibility.Utilizating sulfur, an inexpensive industrial waste product, to synthesize dynamic polysulfide polymers through reverse vulcanization has been a notable approach. However, this method required high temperatures and resulted in the release of unpleasant oders. In this study, we presented a robust method for the preparation of sulfur-rich polymers with dynamic polysulfide bonds from elemental sulfur and inexpensive epoxide monomers via a one-pot strategy at the mild room temperature. Different types of polysulfide molecules and polymers were synthesized by reacting various epoxide compounds with sulfur, along with the investigation of their structures and dynamic behaviors. It was noteworthy that the obatined polymers prepared from m-(2,3-epoxypropoxy)-N,N-bis(2,3-epoxypropyl)aniline and elemental sulfur exhibit multiple dynamic behaviors, including polysulfide metathesis and polysulfide-thiol exchange, enabling their rapid stress relaxation, self-healing, reprocessing and degradable properties of the cross-linked polymer. More importantly, the hydroxyl groups at the side chains from epoxide ring opening exhibited potential transesterification. This work provided a facile strategy for designing dynamic sulfur-rich polymers via a mild synthesis route.
基金the NSAF(No.U2130123)the International Partnership Program of the Chinese Academy of Sciences(Nos.181231KYSB20200033 and 181231KYSB20200040)the Shanghai Science and Technology Program(No.21511105000).
文摘As intense,ultrashort,kHz-repetition-rate laser systems become commercially available,pulse cumulative effects are critical for laser filament-based applications.In this work,the pulse repetition-rate effect on femtosecond laser filamentation in air was investigated both numerically and experimentally.The pulse repetition-rate effect has negligible influence at the leading edge of the filament.Clear intensity enhancement from a high-repetition pulse is observed at the peak and tailing edge of the laser filament.As the repetition rate of the laser pulses increases from 100 to 1000 Hz,the length of the filament extends and the intensity inside the filament increases.A physical picture based on the pulse repetition-rate dependent‘low-density hole’effect on filamentation is proposed to explain the obtained results well.
基金the support from the National Natural Science Foundation of China under Grant Nos.62071064 and 62131002the Fundamental Research Funds for the Central Universities of China under Grant No.2019XD-A02the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)(No.IPOC2022ZT10),China.
文摘Chiral quantum optics is a new research area in light-matter interaction that depends on the direction of light propagation and offers a new path for the quantum regulation of light-matter interactions.In this paper,we study a spinning Kerr-type microresonator coupled withΛ-type atom ensembles,which are driven in opposite directions to generate asymmetric photon statistics.We find that a photon blockade can only be generated by driving the spinning resonator on right side without driving the spinning microresonator from the left side,resulting in chirality.The coupling strength between system modes can be precisely controlled by adjusting the detuning amount of the atomic pump field.Because of the splitting of the resonant frequency generated by the Fizeau drag,the destructive quantum interference generated in right side drive prevents the nonresonant transition path of state|1,0⟩to state|2,0⟩.This direction-dependent chiral quantum optics is expected to be applied to chiral optical devices,single-photon sources and nonreciprocal quantum communications.
基金supported by the National Natural Science Foundation of China(Grant No.61671083)the National Key Research and Development Program of China(Grant No.2016YFA0301304)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),China
文摘Bell-state analysis(BSA) has great application in the quantum communication. To our best knowledge, the current works are devoted to the physical realization of symmetrical 2×2-dimensional or 2^N× 2^N-dimensional 2-qudit BSA, and there is no work focused on the physical realization of the asymmetrical high-dimensional(for example 3×4-dimensional 2-qudit) Bell-states complete analysis. In this paper, by using the nonlinear interaction between the atoms and photons, we propose a scheme to completely distinguish the asymmetrical 3×4-dimensional 2-qudit Bell states of a hybrid system. We use the quantum information splitting, which is exploited to resolve the degree-mismatch issue in the quantum state sharing schemes, as an example to show the application of the asymmetrical BSA. Finally, we discuss its possible realization with current experimental techniques. Our asymmetrical high-dimensional BSA protocol may pave a new way for high-capacity long-distance quantum communication.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB16010400)the International Partnership Program of Chinese Academy of Sciences(Nos.181231KYSB20160045 and 181231KYSB20200033)the support from the Russian Science Foundation(No.2149-00023)。
文摘Laser polarization and its intensity inside a filament core play an important role in filament-based applications.However,polarization dependent clamping intensity inside filaments has been overlooked to interpret the polarization-related filamentation phenomena.Here,we report on experimental and numerical investigations of polarization dependent clamping intensity inside a femtosecond filament in air.By adjusting the initial polarization from linear to circular,the clamping intensity is increased by 1.36 times when using a 30 cm focal length lens for filamentation.The results indicate that clamping intensity inside the filament is sensitive to laser polarization,which has to be considered to fully understand polarizationrelated phenomena.
基金supported in part by National Natural Science Foundation of China (Nos 61221064,11127901 and 11404354)the National 973 Project of China (No.2011CB808103)+2 种基金the Chinese Academy of Sciences and the State Key Laboratory of High Field Laser Physicsthe 100 Talents Program of Chinese Academy of Sciencesthe Shanghai Pujiang Program
文摘We report on a systematic experimental study on the fluorescence spectra produced from a femtosecond laser filament in air under a high electric field. The electric field alone was strong enough to create corona discharge(CD). Fluorescence spectra from neutral and ionic air molecules were measured and compared with pure high-voltage CD and pure laser filamentation(FIL). Among them, high electric field assisted laser FIL produced nitrogen fluorescence more efficiently than either pure CD or pure FIL processes. The nonlinear enhancement of fluorescence from the interaction of the laser filament and corona discharging electric field resulted in a more efficient ionization along the laser filament zone, which was confirmed by the spectroscopic measurement of both ionization-induced fluorescence and plasma-scattered 800 nm laser pulses. This is believed to be the key precursor process for filament-guided discharge.