期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Advances in microfluidic-based DNA methylation analysis 被引量:1
1
作者 Jiwen li tiechuan li Xuexin Duan 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期116-134,共19页
DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation ... DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis. 展开更多
关键词 Microfluidic chip DNA methylation analysis Molecular analysis High throughput Low cost
下载PDF
Theoretical and experimental characterizations of gigahertz acoustic streaming in microscale fluids 被引量:2
2
作者 Weiwei Cui Wei Pang +2 位作者 Yang Yang tiechuan li Xuexin Duan 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2019年第1期15-22,共8页
Even as gigahertz(GHz) acoustic streaming has developed into a multi-functional platform technology for biochemical applications, including ultrafast microfluidic mixing, microparticle operations, and cellar or vesicl... Even as gigahertz(GHz) acoustic streaming has developed into a multi-functional platform technology for biochemical applications, including ultrafast microfluidic mixing, microparticle operations, and cellar or vesicle surgery, its theoretical principles have yet to be established. This is because few studies have been conducted on the use of such high frequency acoustics in microscale fluids. Another difficulty is the lack of velocimetry methods for microscale and nanoscale fluidic streaming. In this work, we focus on the basic aspects of GHz acoustic streaming,including its micro-vortex generation principles, theoretical model, and experimental characterization technologies. We present details of a weak-coupled finite simulation that represents our current understanding of the GHz-acoustic-streaming phenomenon. Both our simulation and experimental results show that the GHzacoustic-induced interfacial body force plays a determinative role in vortex generation. We carefully studied changes in the formation of GHz acoustic streaming at different acoustic powers and flow rates. In particular,we developed a microfluidic-particle-image velocimetry method that enables the quantification of streaming at the microscale and even nanoscale. This work provides a full map of GHz acoustofluidics and highlights the way to further theoretical study of this topic. 展开更多
关键词 Acoustic STREAMING Gigahertz BODY force Microfluidic PIV
下载PDF
Manipulations of micro/nanoparticles using gigahertz acoustic streaming tweezers 被引量:2
3
作者 Hang Wu Zifan Tang +8 位作者 Rui You Shuting Pan Wenpeng liu Hongxiang Zhang tiechuan li Yang Yang Chongling Sun Wei Pang Xuexin Duan 《Nanotechnology and Precision Engineering》 CAS CSCD 2022年第2期1-11,共11页
Contactless acoustic manipulation of micro/nanoscale particles has attracted considerable attention owing to its near independence of the physical and chemical properties of the targets,making it universally applicabl... Contactless acoustic manipulation of micro/nanoscale particles has attracted considerable attention owing to its near independence of the physical and chemical properties of the targets,making it universally applicable to almost all biological systems.Thin-film bulk acoustic wave(BAW)resonators operating at gigahertz(GHz)frequencies have been demonstrated to generate localized high-speed microvortices through acoustic streaming effects.Benefitting from the strong drag forces of the high-speed vortices,BAW-enabled GHz acoustic streaming tweezers(AST)have been applied to the trapping and enrichment of particles ranging in size from micrometers to less than 100 nm.However,the behavior of particles in such 3D microvortex systems is still largely unknown.In this work,the particle behavior(trapping,enrichment,and separation)in GHz AST is studied by theoretical analyses,3D simulations,and microparticle tracking experiments.It is found that the particle motion in the vortices is determined mainly by the balance between the acoustic streaming drag force and the acoustic radiation force.This work can provide basic design principles for AST-based lab-on-a-chip systems for a variety of applications. 展开更多
关键词 Acoustofluidics Bulk acoustic wave resonator Acoustic streaming Acoustic tweezers Particle manipulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部