期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Decomposition dynamics of coarse woody debris of three important central European tree species 被引量:7
1
作者 Steffen Herrmann tiemo kahl Jürgen Bauhus 《Forest Ecosystems》 SCIE CSCD 2015年第4期339-352,共14页
Background: Coarse woody debris (CWD) is an important element of forest structure that needs to be considered when managing forests for biodiversity, carbon storage or bioenergy. To manage it effectively dynamics o... Background: Coarse woody debris (CWD) is an important element of forest structure that needs to be considered when managing forests for biodiversity, carbon storage or bioenergy. To manage it effectively dynamics of CWD decomposition should be known. Methods: Using a chronosequence approach, we assessed the decomposition rates of downed CWD of Fagus sylvatica, Picea obies and Pinus sylvestfis, which was sampled from three different years of tree fall and three different initial diameter classes (〉10 - ≤20 cm, 〉20 - ≤40 cm, 〉40 cm). Samples originating from wind throws in 1999 were collected along a temperature and precipitation gradient. Based on the decay class and associated wood densities, log volumes were converted into CWD mass and C content. Log fragmentation was assessed over one year for log segments of intermediate diameters (〉20 - 40 cm) after 8 and 18 years of decomposition. Results: Significantly higher decomposition constants (k) were found in logs of F. sylvotica (0.054 year^-1) than in P. abies (0.033 year^-1) and P. sylvestris (0.032 year^-1). However, mass loss of P. sylvestris occurred mainly in sapwood and hence k for the whole wood may be overestimated. Decomposition rates generally decreased with increasing log diameter class except for smaller dimensions in P. obies. About 74 % of the variation in mass remaining could be explained by decomposition time (27 %), tree species (11%), diameter (17 %), the interactive effects between tree species and diameter (4 %) as well as between decomposition time and tree species (3 %) and a random factor (site and tree; 9.5 %), whereas temperature explained only 2 %. Wood fragmentation may play a more important role than previously thought. Here, between 14 % and 30 % of the decomposition rates (for the first 18 years) were attributable to this process. Carbon (C) density (mgC· cm ^-3), which was initially highest for F. sylvatico, followed by P. sylvestris and P. obies, decreased with increasing decay stage to similar values for all species. Conclusions: The apparent lack of climate effects on decomposition of logs in the field indicates that regional decomposition models for CWD may be developed on the basis of information on decomposition time, tree species and dimension only. These can then be used to predict C dynamics in CWD as input for C accounting models and for habitat management. 展开更多
关键词 Dead wood CARBON Decay rate BEECH SPRUCE PINE
下载PDF
Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests 被引量:2
2
作者 Björn Hoppe Witoon Purahong +6 位作者 Tesfaye Wubet tiemo kahl Jürgen Bauhus Tobias Arnstadt Martin Hofrichter François Buscot Dirk Krüger 《Fungal Diversity》 SCIE 2016年第2期367-379,共13页
Fungi play vital roles in the decomposition of deadwood due to their secretion of various enzymes that break down plant cell-wall complexes.The compositions of woodinhabiting fungal(WIF)communities change over the c... Fungi play vital roles in the decomposition of deadwood due to their secretion of various enzymes that break down plant cell-wall complexes.The compositions of woodinhabiting fungal(WIF)communities change over the course of the decomposition process as the remaining mass of wood decreases and both abiotic and biotic conditions of the wood significantly change.It is currently not resolved which substrate-related factors govern these changes in WIF communities and whether such changes influence the deadwood decomposition rate.Here we report a study on fungal richness and community structure in deadwood of Norway spruce and European beech in temperate forest ecosystems using 454 pyrosequencing.Our aims were to disentangle the factors that correspond to WIF community composition and to investigate the links between fungal richness,taxonomically-resolved fungal identity,and microbial-mediated ecosystem functions and processes by analyzing physico-chemical wood properties,lignin-modifying enzyme activities and wood decomposition rates.Unlike fungal richness,we found significant differences in community structure between deadwood of different tree species.The composition of WIF communities was related to the physico-chemical properties of the deadwood substrates.Decomposition rates and the activities of ligninmodifying enzymes were controlled by the succession of the fungal communities and competition scenarios rather than fungal OTU richness.Our results provide further insights into links between fungal community structure and microbialmediated ecosystem functions and processes. 展开更多
关键词 Ecosystem processes Enzyme activity Wood decay Physico-chemical wood properties ASCOMYCETES BASIDIOMYCETES PYROSEQUENCING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部