The amount of tunnels excavated along stratified/sedimentary rock masses in Quangninh coal mine area,Vietnam, is gradually increasing. Rock mass in Quangninh is characterized by beddings between rock layers. The behav...The amount of tunnels excavated along stratified/sedimentary rock masses in Quangninh coal mine area,Vietnam, is gradually increasing. Rock mass in Quangninh is characterized by beddings between rock layers. The behavior of stratified rock masses surrounding the tunnels depends on both the intact rock and the beddings between rock layers. The main characteristics of stratified rock masses that need to be considered are their heterogeneity and anisotropy. Depending on the dip angle of rock layers, movements and failure zones developed surrounding the tunnels can be asymmetrical over the vertical axis of tunnel. This asymmetry causes adverse behaviors of the tunnel structures. The objective of this study is to highlight convergences and yielded zones developed in rock masses surrounding noncircular tunnels in Quangninh coal mine area using a finite element method. The presence of bedding joints is explicitly simulated. The numerical results indicated that with the increase in dip angle of bedding joints, the stress asymmetry over the tunnel vertical axis increases. It gradually leads to an asymmetry of the failure zone surrounding the tunnel. An increase of rock mass quality means a decrease of rock mass sensitivity to the discontinuities. In addition,a dip angle of the bedding joints of approximately 45° could be considered as the critical angle at which the rock mass mechanism changes between sliding and bending.展开更多
基金funded by the Vietnamese National Foundation for Science and Technology Development(NAFOSTED)(Grant No.105.08-2015.14)
文摘The amount of tunnels excavated along stratified/sedimentary rock masses in Quangninh coal mine area,Vietnam, is gradually increasing. Rock mass in Quangninh is characterized by beddings between rock layers. The behavior of stratified rock masses surrounding the tunnels depends on both the intact rock and the beddings between rock layers. The main characteristics of stratified rock masses that need to be considered are their heterogeneity and anisotropy. Depending on the dip angle of rock layers, movements and failure zones developed surrounding the tunnels can be asymmetrical over the vertical axis of tunnel. This asymmetry causes adverse behaviors of the tunnel structures. The objective of this study is to highlight convergences and yielded zones developed in rock masses surrounding noncircular tunnels in Quangninh coal mine area using a finite element method. The presence of bedding joints is explicitly simulated. The numerical results indicated that with the increase in dip angle of bedding joints, the stress asymmetry over the tunnel vertical axis increases. It gradually leads to an asymmetry of the failure zone surrounding the tunnel. An increase of rock mass quality means a decrease of rock mass sensitivity to the discontinuities. In addition,a dip angle of the bedding joints of approximately 45° could be considered as the critical angle at which the rock mass mechanism changes between sliding and bending.