New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design.Here,we identified a receptorbind...New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design.Here,we identified a receptorbinding domain(RBD)-binding antibody,XG014,which potently neutralizesβ-coronavirus lineage B(β-CoV-B),including SARS-CoV-2,its circulating variants,SARSCoV and bat SARSr-CoV WIV1.Interestingly,antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibodydependent SARS-CoV-2 spike(S)protein-mediated cellcell fusion,suggesting a unique mode of recognition by XG014.Structural analyses reveal that XG014 recognizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional“down”conformation,while its family member XG005 directly competes with ACE2 binding and position the RBD“up”.Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo.Our findings suggest the potential to develop XG014 as pan-β-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines againstβ-CoV-B and newly emerging SARS-CoV-2 variants of concern.展开更多
基金the National Natural Science Foundation of China(81822045 and 82041036 to L.L.,81900729 to L.S.,31872730 and 32070947 to Q.W.)the Program of Shanghai Academic/Technology Research Leader(20XD1420300 to L.L.).
文摘New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design.Here,we identified a receptorbinding domain(RBD)-binding antibody,XG014,which potently neutralizesβ-coronavirus lineage B(β-CoV-B),including SARS-CoV-2,its circulating variants,SARSCoV and bat SARSr-CoV WIV1.Interestingly,antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibodydependent SARS-CoV-2 spike(S)protein-mediated cellcell fusion,suggesting a unique mode of recognition by XG014.Structural analyses reveal that XG014 recognizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional“down”conformation,while its family member XG005 directly competes with ACE2 binding and position the RBD“up”.Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo.Our findings suggest the potential to develop XG014 as pan-β-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines againstβ-CoV-B and newly emerging SARS-CoV-2 variants of concern.