Honey bees are an established animal model for studying learning and memory related behaviors. In recent years, honey bees have become more common as a model for investigations of molecular biology, including gene exp...Honey bees are an established animal model for studying learning and memory related behaviors. In recent years, honey bees have become more common as a model for investigations of molecular biology, including gene expression. Honey bees have been used to extrapolate genetic functions found in other invertebrates, such as <i><span style="font-family:Verdana;">Drosophila</span></i><span> <i><span style="font-family:Verdana;">melanogaster</span></i><span style="font-family:Verdana;">.</span></span><span style="font-family:Verdana;"> The honey bee model has also provided a means for isolating novel genes, including non-coding microRNA fragments. Integrating the study of learning and memory with molecular genetics, the present work examines the effect of learning acquisition and memory consolidation </span><span style="font-family:Verdana;">in free-choice paradigms on the expression of a suite of genes of interest. Results suggest </span><span style="font-family:Verdana;">that short-term learning acquisition causes differential expression of microRNA fragments, </span><span style="font-family:Verdana;">while memory consolidation differentially affects the expression of the serine/threonine </span><span style="font-family:Verdana;">protein kinase gene in honey bees. These results corroborate previous findings suggesting the importance of protein kinases in the formation of long term memory, and suggest that microRNA may play a large role in regulation of cytoskeletal scaffolding proteins.</span>展开更多
文摘Honey bees are an established animal model for studying learning and memory related behaviors. In recent years, honey bees have become more common as a model for investigations of molecular biology, including gene expression. Honey bees have been used to extrapolate genetic functions found in other invertebrates, such as <i><span style="font-family:Verdana;">Drosophila</span></i><span> <i><span style="font-family:Verdana;">melanogaster</span></i><span style="font-family:Verdana;">.</span></span><span style="font-family:Verdana;"> The honey bee model has also provided a means for isolating novel genes, including non-coding microRNA fragments. Integrating the study of learning and memory with molecular genetics, the present work examines the effect of learning acquisition and memory consolidation </span><span style="font-family:Verdana;">in free-choice paradigms on the expression of a suite of genes of interest. Results suggest </span><span style="font-family:Verdana;">that short-term learning acquisition causes differential expression of microRNA fragments, </span><span style="font-family:Verdana;">while memory consolidation differentially affects the expression of the serine/threonine </span><span style="font-family:Verdana;">protein kinase gene in honey bees. These results corroborate previous findings suggesting the importance of protein kinases in the formation of long term memory, and suggest that microRNA may play a large role in regulation of cytoskeletal scaffolding proteins.</span>